aboutsummaryrefslogtreecommitdiff
blob: ba57008300d2e463f67bab6561f76908f0933dfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
#!/bin/sh -u

# Architecture commands for GDB, the GNU debugger.
#
# Copyright (C) 1998-2016 Free Software Foundation, Inc.
#
# This file is part of GDB.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

# Make certain that the script is not running in an internationalized
# environment.
LANG=C ; export LANG
LC_ALL=C ; export LC_ALL


compare_new ()
{
    file=$1
    if test ! -r ${file}
    then
	echo "${file} missing? cp new-${file} ${file}" 1>&2
    elif diff -u ${file} new-${file}
    then
	echo "${file} unchanged" 1>&2
    else
	echo "${file} has changed? cp new-${file} ${file}" 1>&2
    fi
}


# Format of the input table
read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"

do_read ()
{
    comment=""
    class=""
    # On some SH's, 'read' trims leading and trailing whitespace by
    # default (e.g., bash), while on others (e.g., dash), it doesn't.
    # Set IFS to empty to disable the trimming everywhere.
    while IFS='' read line
    do
	if test "${line}" = ""
	then
	    continue
	elif test "${line}" = "#" -a "${comment}" = ""
	then
	    continue
	elif expr "${line}" : "#" > /dev/null
	then
	    comment="${comment}
${line}"
	else

	    # The semantics of IFS varies between different SH's.  Some
	    # treat ``::' as three fields while some treat it as just too.
	    # Work around this by eliminating ``::'' ....
	    line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"

	    OFS="${IFS}" ; IFS="[:]"
	    eval read ${read} <<EOF
${line}
EOF
	    IFS="${OFS}"

	    if test -n "${garbage_at_eol}"
	    then
		echo "Garbage at end-of-line in ${line}" 1>&2
		kill $$
		exit 1
	    fi

	    # .... and then going back through each field and strip out those
	    # that ended up with just that space character.
	    for r in ${read}
	    do
		if eval test \"\${${r}}\" = \"\ \"
		then
		    eval ${r}=""
		fi
	    done

	    case "${class}" in
		m ) staticdefault="${predefault}" ;;
		M ) staticdefault="0" ;;
		* ) test "${staticdefault}" || staticdefault=0 ;;
	    esac

	    case "${class}" in
	    F | V | M )
		case "${invalid_p}" in
		"" )
		    if test -n "${predefault}"
		    then
			#invalid_p="gdbarch->${function} == ${predefault}"
			predicate="gdbarch->${function} != ${predefault}"
		    elif class_is_variable_p
		    then
			predicate="gdbarch->${function} != 0"
		    elif class_is_function_p
		    then
			predicate="gdbarch->${function} != NULL"
		    fi
		    ;;
		* )
		    echo "Predicate function ${function} with invalid_p." 1>&2
		    kill $$
		    exit 1
		    ;;
		esac
	    esac

	    # PREDEFAULT is a valid fallback definition of MEMBER when
	    # multi-arch is not enabled.  This ensures that the
	    # default value, when multi-arch is the same as the
	    # default value when not multi-arch.  POSTDEFAULT is
	    # always a valid definition of MEMBER as this again
	    # ensures consistency.

	    if [ -n "${postdefault}" ]
	    then
		fallbackdefault="${postdefault}"
	    elif [ -n "${predefault}" ]
	    then
		fallbackdefault="${predefault}"
	    else
		fallbackdefault="0"
	    fi

	    #NOT YET: See gdbarch.log for basic verification of
	    # database

	    break
	fi
    done
    if [ -n "${class}" ]
    then
	true
    else
	false
    fi
}


fallback_default_p ()
{
    [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
	|| [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
}

class_is_variable_p ()
{
    case "${class}" in
	*v* | *V* ) true ;;
	* ) false ;;
    esac
}

class_is_function_p ()
{
    case "${class}" in
	*f* | *F* | *m* | *M* ) true ;;
	* ) false ;;
    esac
}

class_is_multiarch_p ()
{
    case "${class}" in
	*m* | *M* ) true ;;
	* ) false ;;
    esac
}

class_is_predicate_p ()
{
    case "${class}" in
	*F* | *V* | *M* ) true ;;
	* ) false ;;
    esac
}

class_is_info_p ()
{
    case "${class}" in
	*i* ) true ;;
	* ) false ;;
    esac
}


# dump out/verify the doco
for field in ${read}
do
  case ${field} in

    class ) : ;;

	# # -> line disable
	# f -> function
	#   hiding a function
	# F -> function + predicate
	#   hiding a function + predicate to test function validity
	# v -> variable
	#   hiding a variable
	# V -> variable + predicate
	#   hiding a variable + predicate to test variables validity
	# i -> set from info
	#   hiding something from the ``struct info'' object
	# m -> multi-arch function
	#   hiding a multi-arch function (parameterised with the architecture)
        # M -> multi-arch function + predicate
	#   hiding a multi-arch function + predicate to test function validity

    returntype ) : ;;

	# For functions, the return type; for variables, the data type

    function ) : ;;

	# For functions, the member function name; for variables, the
	# variable name.  Member function names are always prefixed with
	# ``gdbarch_'' for name-space purity.

    formal ) : ;;

	# The formal argument list.  It is assumed that the formal
	# argument list includes the actual name of each list element.
	# A function with no arguments shall have ``void'' as the
	# formal argument list.

    actual ) : ;;

	# The list of actual arguments.  The arguments specified shall
	# match the FORMAL list given above.  Functions with out
	# arguments leave this blank.

    staticdefault ) : ;;

	# To help with the GDB startup a static gdbarch object is
	# created.  STATICDEFAULT is the value to insert into that
	# static gdbarch object.  Since this a static object only
	# simple expressions can be used.

	# If STATICDEFAULT is empty, zero is used.

    predefault ) : ;;

	# An initial value to assign to MEMBER of the freshly
	# malloc()ed gdbarch object.  After initialization, the
	# freshly malloc()ed object is passed to the target
	# architecture code for further updates.

	# If PREDEFAULT is empty, zero is used.

	# A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
	# INVALID_P are specified, PREDEFAULT will be used as the
	# default for the non- multi-arch target.

	# A zero PREDEFAULT function will force the fallback to call
	# internal_error().

	# Variable declarations can refer to ``gdbarch'' which will
	# contain the current architecture.  Care should be taken.

    postdefault ) : ;;

	# A value to assign to MEMBER of the new gdbarch object should
	# the target architecture code fail to change the PREDEFAULT
	# value.

	# If POSTDEFAULT is empty, no post update is performed.

	# If both INVALID_P and POSTDEFAULT are non-empty then
	# INVALID_P will be used to determine if MEMBER should be
	# changed to POSTDEFAULT.

	# If a non-empty POSTDEFAULT and a zero INVALID_P are
	# specified, POSTDEFAULT will be used as the default for the
	# non- multi-arch target (regardless of the value of
	# PREDEFAULT).

	# You cannot specify both a zero INVALID_P and a POSTDEFAULT.

	# Variable declarations can refer to ``gdbarch'' which
	# will contain the current architecture.  Care should be
	# taken.

    invalid_p ) : ;;

	# A predicate equation that validates MEMBER.  Non-zero is
	# returned if the code creating the new architecture failed to
	# initialize MEMBER or the initialized the member is invalid.
	# If POSTDEFAULT is non-empty then MEMBER will be updated to
	# that value.  If POSTDEFAULT is empty then internal_error()
	# is called.

	# If INVALID_P is empty, a check that MEMBER is no longer
	# equal to PREDEFAULT is used.

	# The expression ``0'' disables the INVALID_P check making
	# PREDEFAULT a legitimate value.

	# See also PREDEFAULT and POSTDEFAULT.

    print ) : ;;

	# An optional expression that convers MEMBER to a value
	# suitable for formatting using %s.

	# If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
	# or plongest (anything else) is used.

    garbage_at_eol ) : ;;

	# Catches stray fields.

    *)
	echo "Bad field ${field}"
	exit 1;;
  esac
done


function_list ()
{
  # See below (DOCO) for description of each field
  cat <<EOF
i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
#
i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
#
i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
#
i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)

# The bit byte-order has to do just with numbering of bits in debugging symbols
# and such.  Conceptually, it's quite separate from byte/word byte order.
v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0

# Number of bits in a char or unsigned char for the target machine.
# Just like CHAR_BIT in <limits.h> but describes the target machine.
# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
#
# Number of bits in a short or unsigned short for the target machine.
v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
# Number of bits in an int or unsigned int for the target machine.
v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
# Number of bits in a long or unsigned long for the target machine.
v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
# Number of bits in a long long or unsigned long long for the target
# machine.
v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
# Alignment of a long long or unsigned long long for the target
# machine.
v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0

# The ABI default bit-size and format for "half", "float", "double", and
# "long double".  These bit/format pairs should eventually be combined
# into a single object.  For the moment, just initialize them as a pair.
# Each format describes both the big and little endian layouts (if
# useful).

v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)

# Returns the floating-point format to be used for values of length LENGTH.
# NAME, if non-NULL, is the type name, which may be used to distinguish
# different target formats of the same length.
m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0

# For most targets, a pointer on the target and its representation as an
# address in GDB have the same size and "look the same".  For such a
# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
# / addr_bit will be set from it.
#
# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
# gdbarch_address_to_pointer as well.
#
# ptr_bit is the size of a pointer on the target
v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
# addr_bit is the size of a target address as represented in gdb
v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
#
# dwarf2_addr_size is the target address size as used in the Dwarf debug
# info.  For .debug_frame FDEs, this is supposed to be the target address
# size from the associated CU header, and which is equivalent to the
# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
# Unfortunately there is no good way to determine this value.  Therefore
# dwarf2_addr_size simply defaults to the target pointer size.
#
# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
# defined using the target's pointer size so far.
#
# Note that dwarf2_addr_size only needs to be redefined by a target if the
# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
# and if Dwarf versions < 4 need to be supported.
v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
#
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
v:int:char_signed:::1:-1:1
#
F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
# Function for getting target's idea of a frame pointer.  FIXME: GDB's
# whole scheme for dealing with "frames" and "frame pointers" needs a
# serious shakedown.
m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
#
M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
# Read a register into a new struct value.  If the register is wholly
# or partly unavailable, this should call mark_value_bytes_unavailable
# as appropriate.  If this is defined, then pseudo_register_read will
# never be called.
M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
#
v:int:num_regs:::0:-1
# This macro gives the number of pseudo-registers that live in the
# register namespace but do not get fetched or stored on the target.
# These pseudo-registers may be aliases for other registers,
# combinations of other registers, or they may be computed by GDB.
v:int:num_pseudo_regs:::0:0::0

# Assemble agent expression bytecode to collect pseudo-register REG.
# Return -1 if something goes wrong, 0 otherwise.
M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg

# Assemble agent expression bytecode to push the value of pseudo-register
# REG on the interpreter stack.
# Return -1 if something goes wrong, 0 otherwise.
M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg

# Some targets/architectures can do extra processing/display of
# segmentation faults.  E.g., Intel MPX boundary faults.
# Call the architecture dependent function to handle the fault.
# UIOUT is the output stream where the handler will place information.
M:void:handle_segmentation_fault:struct ui_out *uiout:uiout

# GDB's standard (or well known) register numbers.  These can map onto
# a real register or a pseudo (computed) register or not be defined at
# all (-1).
# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
v:int:sp_regnum:::-1:-1::0
v:int:pc_regnum:::-1:-1::0
v:int:ps_regnum:::-1:-1::0
v:int:fp0_regnum:::0:-1::0
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
# Convert from an sdb register number to an internal gdb register number.
m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
# Return -1 for bad REGNUM.  Note: Several targets get this wrong.
m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
m:const char *:register_name:int regnr:regnr::0

# Return the type of a register specified by the architecture.  Only
# the register cache should call this function directly; others should
# use "register_type".
M:struct type *:register_type:int reg_nr:reg_nr

M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
# deprecated_fp_regnum.
v:int:deprecated_fp_regnum:::-1:-1::0

M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
v:int:call_dummy_location::::AT_ENTRY_POINT::0
M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache

# Return true if the code of FRAME is writable.
m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0

m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
# MAP a GDB RAW register number onto a simulator register number.  See
# also include/...-sim.h.
m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0

# Determine the address where a longjmp will land and save this address
# in PC.  Return nonzero on success.
#
# FRAME corresponds to the longjmp frame.
F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc

#
v:int:believe_pcc_promotion:::::::
#
m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
# Construct a value representing the contents of register REGNUM in
# frame FRAME_ID, interpreted as type TYPE.  The routine needs to
# allocate and return a struct value with all value attributes
# (but not the value contents) filled in.
m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
#
m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf

# Return the return-value convention that will be used by FUNCTION
# to return a value of type VALTYPE.  FUNCTION may be NULL in which
# case the return convention is computed based only on VALTYPE.
#
# If READBUF is not NULL, extract the return value and save it in this buffer.
#
# If WRITEBUF is not NULL, it contains a return value which will be
# stored into the appropriate register.  This can be used when we want
# to force the value returned by a function (see the "return" command
# for instance).
M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf

# Return true if the return value of function is stored in the first hidden
# parameter.  In theory, this feature should be language-dependent, specified
# by language and its ABI, such as C++.  Unfortunately, compiler may
# implement it to a target-dependent feature.  So that we need such hook here
# to be aware of this in GDB.
m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0

m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
# On some platforms, a single function may provide multiple entry points,
# e.g. one that is used for function-pointer calls and a different one
# that is used for direct function calls.
# In order to ensure that breakpoints set on the function will trigger
# no matter via which entry point the function is entered, a platform
# may provide the skip_entrypoint callback.  It is called with IP set
# to the main entry point of a function (as determined by the symbol table),
# and should return the address of the innermost entry point, where the
# actual breakpoint needs to be set.  Note that skip_entrypoint is used
# by GDB common code even when debugging optimized code, where skip_prologue
# is not used.
M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip

f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:0:default_breakpoint_from_pc::0

# Return the breakpoint kind for this target based on *PCPTR.
m:int:breakpoint_kind_from_pc:CORE_ADDR *pcptr:pcptr::0:

# Return the software breakpoint from KIND.  KIND can have target
# specific meaning like the Z0 kind parameter.
# SIZE is set to the software breakpoint's length in memory.
m:const gdb_byte *:sw_breakpoint_from_kind:int kind, int *size:kind, size::NULL::0

# Return the breakpoint kind for this target based on the current
# processor state (e.g. the current instruction mode on ARM) and the
# *PCPTR.  In default, it is gdbarch->breakpoint_kind_from_pc.
m:int:breakpoint_kind_from_current_state:struct regcache *regcache, CORE_ADDR *pcptr:regcache, pcptr:0:default_breakpoint_kind_from_current_state::0

M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
v:CORE_ADDR:decr_pc_after_break:::0:::0

# A function can be addressed by either it's "pointer" (possibly a
# descriptor address) or "entry point" (first executable instruction).
# The method "convert_from_func_ptr_addr" converting the former to the
# latter.  gdbarch_deprecated_function_start_offset is being used to implement
# a simplified subset of that functionality - the function's address
# corresponds to the "function pointer" and the function's start
# corresponds to the "function entry point" - and hence is redundant.

v:CORE_ADDR:deprecated_function_start_offset:::0:::0

# Return the remote protocol register number associated with this
# register.  Normally the identity mapping.
m:int:remote_register_number:int regno:regno::default_remote_register_number::0

# Fetch the target specific address used to represent a load module.
F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
#
v:CORE_ADDR:frame_args_skip:::0:::0
M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
# frame-base.  Enable frame-base before frame-unwind.
F:int:frame_num_args:struct frame_info *frame:frame
#
M:CORE_ADDR:frame_align:CORE_ADDR address:address
m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
v:int:frame_red_zone_size
#
m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
# On some machines there are bits in addresses which are not really
# part of the address, but are used by the kernel, the hardware, etc.
# for special purposes.  gdbarch_addr_bits_remove takes out any such bits so
# we get a "real" address such as one would find in a symbol table.
# This is used only for addresses of instructions, and even then I'm
# not sure it's used in all contexts.  It exists to deal with there
# being a few stray bits in the PC which would mislead us, not as some
# sort of generic thing to handle alignment or segmentation (it's
# possible it should be in TARGET_READ_PC instead).
m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0

# FIXME/cagney/2001-01-18: This should be split in two.  A target method that
# indicates if the target needs software single step.  An ISA method to
# implement it.
#
# FIXME/cagney/2001-01-18: The logic is backwards.  It should be asking if the
# target can single step.  If not, then implement single step using breakpoints.
#
# Return a vector of addresses on which the software single step
# breakpoints should be inserted.  NULL means software single step is
# not used.
# Multiple breakpoints may be inserted for some instructions such as
# conditional branch.  However, each implementation must always evaluate
# the condition and only put the breakpoint at the branch destination if
# the condition is true, so that we ensure forward progress when stepping
# past a conditional branch to self.
F:VEC (CORE_ADDR) *:software_single_step:struct regcache *regcache:regcache

# Return non-zero if the processor is executing a delay slot and a
# further single-step is needed before the instruction finishes.
M:int:single_step_through_delay:struct frame_info *frame:frame
# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
# disassembler.  Perhaps objdump can handle it?
f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0


# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
# evaluates non-zero, this is the address where the debugger will place
# a step-resume breakpoint to get us past the dynamic linker.
m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
# Some systems also have trampoline code for returning from shared libs.
m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0

# A target might have problems with watchpoints as soon as the stack
# frame of the current function has been destroyed.  This mostly happens
# as the first action in a function's epilogue.  stack_frame_destroyed_p()
# is defined to return a non-zero value if either the given addr is one
# instruction after the stack destroying instruction up to the trailing
# return instruction or if we can figure out that the stack frame has
# already been invalidated regardless of the value of addr.  Targets
# which don't suffer from that problem could just let this functionality
# untouched.
m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
# Process an ELF symbol in the minimal symbol table in a backend-specific
# way.  Normally this hook is supposed to do nothing, however if required,
# then this hook can be used to apply tranformations to symbols that are
# considered special in some way.  For example the MIPS backend uses it
# to interpret \`st_other' information to mark compressed code symbols so
# that they can be treated in the appropriate manner in the processing of
# the main symbol table and DWARF-2 records.
F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
# Process a symbol in the main symbol table in a backend-specific way.
# Normally this hook is supposed to do nothing, however if required,
# then this hook can be used to apply tranformations to symbols that
# are considered special in some way.  This is currently used by the
# MIPS backend to make sure compressed code symbols have the ISA bit
# set.  This in turn is needed for symbol values seen in GDB to match
# the values used at the runtime by the program itself, for function
# and label references.
f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
# Adjust the address retrieved from a DWARF-2 record other than a line
# entry in a backend-specific way.  Normally this hook is supposed to
# return the address passed unchanged, however if that is incorrect for
# any reason, then this hook can be used to fix the address up in the
# required manner.  This is currently used by the MIPS backend to make
# sure addresses in FDE, range records, etc. referring to compressed
# code have the ISA bit set, matching line information and the symbol
# table.
f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
# Adjust the address updated by a line entry in a backend-specific way.
# Normally this hook is supposed to return the address passed unchanged,
# however in the case of inconsistencies in these records, this hook can
# be used to fix them up in the required manner.  This is currently used
# by the MIPS backend to make sure all line addresses in compressed code
# are presented with the ISA bit set, which is not always the case.  This
# in turn ensures breakpoint addresses are correctly matched against the
# stop PC.
f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
v:int:cannot_step_breakpoint:::0:0::0
v:int:have_nonsteppable_watchpoint:::0:0::0
F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
M:const char *:address_class_type_flags_to_name:int type_flags:type_flags

# Return the appropriate type_flags for the supplied address class.
# This function should return 1 if the address class was recognized and
# type_flags was set, zero otherwise.
M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
# Is a register in a group
m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
# Fetch the pointer to the ith function argument.
F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type

# Iterate over all supported register notes in a core file.  For each
# supported register note section, the iterator must call CB and pass
# CB_DATA unchanged.  If REGCACHE is not NULL, the iterator can limit
# the supported register note sections based on the current register
# values.  Otherwise it should enumerate all supported register note
# sections.
M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache

# Create core file notes
M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size

# The elfcore writer hook to use to write Linux prpsinfo notes to core
# files.  Most Linux architectures use the same prpsinfo32 or
# prpsinfo64 layouts, and so won't need to provide this hook, as we
# call the Linux generic routines in bfd to write prpsinfo notes by
# default.
F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info

# Find core file memory regions
M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data

# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
# core file into buffer READBUF with length LEN.  Return the number of bytes read
# (zero indicates failure).
# failed, otherwise, return the red length of READBUF.
M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len

# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
# libraries list from core file into buffer READBUF with length LEN.
# Return the number of bytes read (zero indicates failure).
M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len

# How the core target converts a PTID from a core file to a string.
M:char *:core_pid_to_str:ptid_t ptid:ptid

# How the core target extracts the name of a thread from a core file.
M:const char *:core_thread_name:struct thread_info *thr:thr

# BFD target to use when generating a core file.
V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)

# If the elements of C++ vtables are in-place function descriptors rather
# than normal function pointers (which may point to code or a descriptor),
# set this to one.
v:int:vtable_function_descriptors:::0:0::0

# Set if the least significant bit of the delta is used instead of the least
# significant bit of the pfn for pointers to virtual member functions.
v:int:vbit_in_delta:::0:0::0

# Advance PC to next instruction in order to skip a permanent breakpoint.
f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0

# The maximum length of an instruction on this architecture in bytes.
V:ULONGEST:max_insn_length:::0:0

# Copy the instruction at FROM to TO, and make any adjustments
# necessary to single-step it at that address.
#
# REGS holds the state the thread's registers will have before
# executing the copied instruction; the PC in REGS will refer to FROM,
# not the copy at TO.  The caller should update it to point at TO later.
#
# Return a pointer to data of the architecture's choice to be passed
# to gdbarch_displaced_step_fixup.  Or, return NULL to indicate that
# the instruction's effects have been completely simulated, with the
# resulting state written back to REGS.
#
# For a general explanation of displaced stepping and how GDB uses it,
# see the comments in infrun.c.
#
# The TO area is only guaranteed to have space for
# gdbarch_max_insn_length (arch) bytes, so this function must not
# write more bytes than that to that area.
#
# If you do not provide this function, GDB assumes that the
# architecture does not support displaced stepping.
#
# If your architecture doesn't need to adjust instructions before
# single-stepping them, consider using simple_displaced_step_copy_insn
# here.
#
# If the instruction cannot execute out of line, return NULL.  The
# core falls back to stepping past the instruction in-line instead in
# that case.
M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs

# Return true if GDB should use hardware single-stepping to execute
# the displaced instruction identified by CLOSURE.  If false,
# GDB will simply restart execution at the displaced instruction
# location, and it is up to the target to ensure GDB will receive
# control again (e.g. by placing a software breakpoint instruction
# into the displaced instruction buffer).
#
# The default implementation returns false on all targets that
# provide a gdbarch_software_single_step routine, and true otherwise.
m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0

# Fix up the state resulting from successfully single-stepping a
# displaced instruction, to give the result we would have gotten from
# stepping the instruction in its original location.
#
# REGS is the register state resulting from single-stepping the
# displaced instruction.
#
# CLOSURE is the result from the matching call to
# gdbarch_displaced_step_copy_insn.
#
# If you provide gdbarch_displaced_step_copy_insn.but not this
# function, then GDB assumes that no fixup is needed after
# single-stepping the instruction.
#
# For a general explanation of displaced stepping and how GDB uses it,
# see the comments in infrun.c.
M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL

# Free a closure returned by gdbarch_displaced_step_copy_insn.
#
# If you provide gdbarch_displaced_step_copy_insn, you must provide
# this function as well.
#
# If your architecture uses closures that don't need to be freed, then
# you can use simple_displaced_step_free_closure here.
#
# For a general explanation of displaced stepping and how GDB uses it,
# see the comments in infrun.c.
m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)

# Return the address of an appropriate place to put displaced
# instructions while we step over them.  There need only be one such
# place, since we're only stepping one thread over a breakpoint at a
# time.
#
# For a general explanation of displaced stepping and how GDB uses it,
# see the comments in infrun.c.
m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)

# Relocate an instruction to execute at a different address.  OLDLOC
# is the address in the inferior memory where the instruction to
# relocate is currently at.  On input, TO points to the destination
# where we want the instruction to be copied (and possibly adjusted)
# to.  On output, it points to one past the end of the resulting
# instruction(s).  The effect of executing the instruction at TO shall
# be the same as if executing it at FROM.  For example, call
# instructions that implicitly push the return address on the stack
# should be adjusted to return to the instruction after OLDLOC;
# relative branches, and other PC-relative instructions need the
# offset adjusted; etc.
M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL

# Refresh overlay mapped state for section OSECT.
F:void:overlay_update:struct obj_section *osect:osect

M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd

# Handle special encoding of static variables in stabs debug info.
F:const char *:static_transform_name:const char *name:name
# Set if the address in N_SO or N_FUN stabs may be zero.
v:int:sofun_address_maybe_missing:::0:0::0

# Parse the instruction at ADDR storing in the record execution log
# the registers REGCACHE and memory ranges that will be affected when
# the instruction executes, along with their current values.
# Return -1 if something goes wrong, 0 otherwise.
M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr

# Save process state after a signal.
# Return -1 if something goes wrong, 0 otherwise.
M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal

# Signal translation: translate inferior's signal (target's) number
# into GDB's representation.  The implementation of this method must
# be host independent.  IOW, don't rely on symbols of the NAT_FILE
# header (the nm-*.h files), the host <signal.h> header, or similar
# headers.  This is mainly used when cross-debugging core files ---
# "Live" targets hide the translation behind the target interface
# (target_wait, target_resume, etc.).
M:enum gdb_signal:gdb_signal_from_target:int signo:signo

# Signal translation: translate the GDB's internal signal number into
# the inferior's signal (target's) representation.  The implementation
# of this method must be host independent.  IOW, don't rely on symbols
# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
# header, or similar headers.
# Return the target signal number if found, or -1 if the GDB internal
# signal number is invalid.
M:int:gdb_signal_to_target:enum gdb_signal signal:signal

# Extra signal info inspection.
#
# Return a type suitable to inspect extra signal information.
M:struct type *:get_siginfo_type:void:

# Record architecture-specific information from the symbol table.
M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym

# Function for the 'catch syscall' feature.

# Get architecture-specific system calls information from registers.
M:LONGEST:get_syscall_number:ptid_t ptid:ptid

# The filename of the XML syscall for this architecture.
v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)

# Information about system calls from this architecture
v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)

# SystemTap related fields and functions.

# A NULL-terminated array of prefixes used to mark an integer constant
# on the architecture's assembly.
# For example, on x86 integer constants are written as:
#
#  \$10 ;; integer constant 10
#
# in this case, this prefix would be the character \`\$\'.
v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)

# A NULL-terminated array of suffixes used to mark an integer constant
# on the architecture's assembly.
v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)

# A NULL-terminated array of prefixes used to mark a register name on
# the architecture's assembly.
# For example, on x86 the register name is written as:
#
#  \%eax ;; register eax
#
# in this case, this prefix would be the character \`\%\'.
v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)

# A NULL-terminated array of suffixes used to mark a register name on
# the architecture's assembly.
v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)

# A NULL-terminated array of prefixes used to mark a register
# indirection on the architecture's assembly.
# For example, on x86 the register indirection is written as:
#
#  \(\%eax\) ;; indirecting eax
#
# in this case, this prefix would be the charater \`\(\'.
#
# Please note that we use the indirection prefix also for register
# displacement, e.g., \`4\(\%eax\)\' on x86.
v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)

# A NULL-terminated array of suffixes used to mark a register
# indirection on the architecture's assembly.
# For example, on x86 the register indirection is written as:
#
#  \(\%eax\) ;; indirecting eax
#
# in this case, this prefix would be the charater \`\)\'.
#
# Please note that we use the indirection suffix also for register
# displacement, e.g., \`4\(\%eax\)\' on x86.
v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)

# Prefix(es) used to name a register using GDB's nomenclature.
#
# For example, on PPC a register is represented by a number in the assembly
# language (e.g., \`10\' is the 10th general-purpose register).  However,
# inside GDB this same register has an \`r\' appended to its name, so the 10th
# register would be represented as \`r10\' internally.
v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)

# Suffix used to name a register using GDB's nomenclature.
v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)

# Check if S is a single operand.
#
# Single operands can be:
#  \- Literal integers, e.g. \`\$10\' on x86
#  \- Register access, e.g. \`\%eax\' on x86
#  \- Register indirection, e.g. \`\(\%eax\)\' on x86
#  \- Register displacement, e.g. \`4\(\%eax\)\' on x86
#
# This function should check for these patterns on the string
# and return 1 if some were found, or zero otherwise.  Please try to match
# as much info as you can from the string, i.e., if you have to match
# something like \`\(\%\', do not match just the \`\(\'.
M:int:stap_is_single_operand:const char *s:s

# Function used to handle a "special case" in the parser.
#
# A "special case" is considered to be an unknown token, i.e., a token
# that the parser does not know how to parse.  A good example of special
# case would be ARM's register displacement syntax:
#
#  [R0, #4]  ;; displacing R0 by 4
#
# Since the parser assumes that a register displacement is of the form:
#
#  <number> <indirection_prefix> <register_name> <indirection_suffix>
#
# it means that it will not be able to recognize and parse this odd syntax.
# Therefore, we should add a special case function that will handle this token.
#
# This function should generate the proper expression form of the expression
# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
# and so on).  It should also return 1 if the parsing was successful, or zero
# if the token was not recognized as a special token (in this case, returning
# zero means that the special parser is deferring the parsing to the generic
# parser), and should advance the buffer pointer (p->arg).
M:int:stap_parse_special_token:struct stap_parse_info *p:p

# DTrace related functions.

# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
# NARG must be >= 0.
M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg

# True if the given ADDR does not contain the instruction sequence
# corresponding to a disabled DTrace is-enabled probe.
M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr

# Enable a DTrace is-enabled probe at ADDR.
M:void:dtrace_enable_probe:CORE_ADDR addr:addr

# Disable a DTrace is-enabled probe at ADDR.
M:void:dtrace_disable_probe:CORE_ADDR addr:addr

# True if the list of shared libraries is one and only for all
# processes, as opposed to a list of shared libraries per inferior.
# This usually means that all processes, although may or may not share
# an address space, will see the same set of symbols at the same
# addresses.
v:int:has_global_solist:::0:0::0

# On some targets, even though each inferior has its own private
# address space, the debug interface takes care of making breakpoints
# visible to all address spaces automatically.  For such cases,
# this property should be set to true.
v:int:has_global_breakpoints:::0:0::0

# True if inferiors share an address space (e.g., uClinux).
m:int:has_shared_address_space:void:::default_has_shared_address_space::0

# True if a fast tracepoint can be set at an address.
m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0

# Guess register state based on tracepoint location.  Used for tracepoints
# where no registers have been collected, but there's only one location,
# allowing us to guess the PC value, and perhaps some other registers.
# On entry, regcache has all registers marked as unavailable.
m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0

# Return the "auto" target charset.
f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
# Return the "auto" target wide charset.
f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0

# If non-empty, this is a file extension that will be opened in place
# of the file extension reported by the shared library list.
#
# This is most useful for toolchains that use a post-linker tool,
# where the names of the files run on the target differ in extension
# compared to the names of the files GDB should load for debug info.
v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)

# If true, the target OS has DOS-based file system semantics.  That
# is, absolute paths include a drive name, and the backslash is
# considered a directory separator.
v:int:has_dos_based_file_system:::0:0::0

# Generate bytecodes to collect the return address in a frame.
# Since the bytecodes run on the target, possibly with GDB not even
# connected, the full unwinding machinery is not available, and
# typically this function will issue bytecodes for one or more likely
# places that the return address may be found.
m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0

# Implement the "info proc" command.
M:void:info_proc:const char *args, enum info_proc_what what:args, what

# Implement the "info proc" command for core files.  Noe that there
# are two "info_proc"-like methods on gdbarch -- one for core files,
# one for live targets.
M:void:core_info_proc:const char *args, enum info_proc_what what:args, what

# Iterate over all objfiles in the order that makes the most sense
# for the architecture to make global symbol searches.
#
# CB is a callback function where OBJFILE is the objfile to be searched,
# and CB_DATA a pointer to user-defined data (the same data that is passed
# when calling this gdbarch method).  The iteration stops if this function
# returns nonzero.
#
# CB_DATA is a pointer to some user-defined data to be passed to
# the callback.
#
# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
# inspected when the symbol search was requested.
m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0

# Ravenscar arch-dependent ops.
v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)

# Return non-zero if the instruction at ADDR is a call; zero otherwise.
m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0

# Return non-zero if the instruction at ADDR is a return; zero otherwise.
m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0

# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0

# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
# Return 0 if *READPTR is already at the end of the buffer.
# Return -1 if there is insufficient buffer for a whole entry.
# Return 1 if an entry was read into *TYPEP and *VALP.
M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp

# Print the description of a single auxv entry described by TYPE and VAL
# to FILE.
m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0

# Find the address range of the current inferior's vsyscall/vDSO, and
# write it to *RANGE.  If the vsyscall's length can't be determined, a
# range with zero length is returned.  Returns true if the vsyscall is
# found, false otherwise.
m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0

# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
# PROT has GDB_MMAP_PROT_* bitmask format.
# Throw an error if it is not possible.  Returned address is always valid.
f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0

# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
# Print a warning if it is not possible.
f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0

# Return string (caller has to use xfree for it) with options for GCC
# to produce code for this target, typically "-m64", "-m32" or "-m31".
# These options are put before CU's DW_AT_producer compilation options so that
# they can override it.  Method may also return NULL.
m:char *:gcc_target_options:void:::default_gcc_target_options::0

# Return a regular expression that matches names used by this
# architecture in GNU configury triplets.  The result is statically
# allocated and must not be freed.  The default implementation simply
# returns the BFD architecture name, which is correct in nearly every
# case.
m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0

# Return the size in 8-bit bytes of an addressable memory unit on this
# architecture.  This corresponds to the number of 8-bit bytes associated to
# each address in memory.
m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0

EOF
}

#
# The .log file
#
exec > new-gdbarch.log
function_list | while do_read
do
    cat <<EOF
${class} ${returntype} ${function} ($formal)
EOF
    for r in ${read}
    do
	eval echo \"\ \ \ \ ${r}=\${${r}}\"
    done
    if class_is_predicate_p && fallback_default_p
    then
	echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
	kill $$
	exit 1
    fi
    if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
    then
	echo "Error: postdefault is useless when invalid_p=0" 1>&2
	kill $$
	exit 1
    fi
    if class_is_multiarch_p
    then
	if class_is_predicate_p ; then :
	elif test "x${predefault}" = "x"
	then
	    echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
	    kill $$
	    exit 1
	fi
    fi
    echo ""
done

exec 1>&2
compare_new gdbarch.log


copyright ()
{
cat <<EOF
/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
/* vi:set ro: */

/* Dynamic architecture support for GDB, the GNU debugger.

   Copyright (C) 1998-2016 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* This file was created with the aid of \`\`gdbarch.sh''.

   The Bourne shell script \`\`gdbarch.sh'' creates the files
   \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
   against the existing \`\`gdbarch.[hc]''.  Any differences found
   being reported.

   If editing this file, please also run gdbarch.sh and merge any
   changes into that script. Conversely, when making sweeping changes
   to this file, modifying gdbarch.sh and using its output may prove
   easier.  */

EOF
}

#
# The .h file
#

exec > new-gdbarch.h
copyright
cat <<EOF
#ifndef GDBARCH_H
#define GDBARCH_H

#include "frame.h"

struct floatformat;
struct ui_file;
struct value;
struct objfile;
struct obj_section;
struct minimal_symbol;
struct regcache;
struct reggroup;
struct regset;
struct disassemble_info;
struct target_ops;
struct obstack;
struct bp_target_info;
struct target_desc;
struct objfile;
struct symbol;
struct displaced_step_closure;
struct syscall;
struct agent_expr;
struct axs_value;
struct stap_parse_info;
struct parser_state;
struct ravenscar_arch_ops;
struct elf_internal_linux_prpsinfo;
struct mem_range;
struct syscalls_info;
struct thread_info;
struct ui_out;

#include "regcache.h"

/* The architecture associated with the inferior through the
   connection to the target.

   The architecture vector provides some information that is really a
   property of the inferior, accessed through a particular target:
   ptrace operations; the layout of certain RSP packets; the solib_ops
   vector; etc.  To differentiate architecture accesses to
   per-inferior/target properties from
   per-thread/per-frame/per-objfile properties, accesses to
   per-inferior/target properties should be made through this
   gdbarch.  */

/* This is a convenience wrapper for 'current_inferior ()->gdbarch'.  */
extern struct gdbarch *target_gdbarch (void);

/* Callback type for the 'iterate_over_objfiles_in_search_order'
   gdbarch  method.  */

typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
  (struct objfile *objfile, void *cb_data);

/* Callback type for regset section iterators.  The callback usually
   invokes the REGSET's supply or collect method, to which it must
   pass a buffer with at least the given SIZE.  SECT_NAME is a BFD
   section name, and HUMAN_NAME is used for diagnostic messages.
   CB_DATA should have been passed unchanged through the iterator.  */

typedef void (iterate_over_regset_sections_cb)
  (const char *sect_name, int size, const struct regset *regset,
   const char *human_name, void *cb_data);
EOF

# function typedef's
printf "\n"
printf "\n"
printf "/* The following are pre-initialized by GDBARCH.  */\n"
function_list | while do_read
do
    if class_is_info_p
    then
	printf "\n"
	printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
	printf "/* set_gdbarch_${function}() - not applicable - pre-initialized.  */\n"
    fi
done

# function typedef's
printf "\n"
printf "\n"
printf "/* The following are initialized by the target dependent code.  */\n"
function_list | while do_read
do
    if [ -n "${comment}" ]
    then
	echo "${comment}" | sed \
	    -e '2 s,#,/*,' \
	    -e '3,$ s,#,  ,' \
	    -e '$ s,$, */,'
    fi

    if class_is_predicate_p
    then
	printf "\n"
	printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
    fi
    if class_is_variable_p
    then
	printf "\n"
	printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
	printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
    fi
    if class_is_function_p
    then
	printf "\n"
	if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
	then
	    printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
	elif class_is_multiarch_p
	then
	    printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
	else
	    printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
	fi
	if [ "x${formal}" = "xvoid" ]
	then
	  printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
	else
	  printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
	fi
	printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
    fi
done

# close it off
cat <<EOF

/* Definition for an unknown syscall, used basically in error-cases.  */
#define UNKNOWN_SYSCALL (-1)

extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);


/* Mechanism for co-ordinating the selection of a specific
   architecture.

   GDB targets (*-tdep.c) can register an interest in a specific
   architecture.  Other GDB components can register a need to maintain
   per-architecture data.

   The mechanisms below ensures that there is only a loose connection
   between the set-architecture command and the various GDB
   components.  Each component can independently register their need
   to maintain architecture specific data with gdbarch.

   Pragmatics:

   Previously, a single TARGET_ARCHITECTURE_HOOK was provided.  It
   didn't scale.

   The more traditional mega-struct containing architecture specific
   data for all the various GDB components was also considered.  Since
   GDB is built from a variable number of (fairly independent)
   components it was determined that the global aproach was not
   applicable.  */


/* Register a new architectural family with GDB.

   Register support for the specified ARCHITECTURE with GDB.  When
   gdbarch determines that the specified architecture has been
   selected, the corresponding INIT function is called.

   --

   The INIT function takes two parameters: INFO which contains the
   information available to gdbarch about the (possibly new)
   architecture; ARCHES which is a list of the previously created
   \`\`struct gdbarch'' for this architecture.

   The INFO parameter is, as far as possible, be pre-initialized with
   information obtained from INFO.ABFD or the global defaults.

   The ARCHES parameter is a linked list (sorted most recently used)
   of all the previously created architures for this architecture
   family.  The (possibly NULL) ARCHES->gdbarch can used to access
   values from the previously selected architecture for this
   architecture family.

   The INIT function shall return any of: NULL - indicating that it
   doesn't recognize the selected architecture; an existing \`\`struct
   gdbarch'' from the ARCHES list - indicating that the new
   architecture is just a synonym for an earlier architecture (see
   gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
   - that describes the selected architecture (see gdbarch_alloc()).

   The DUMP_TDEP function shall print out all target specific values.
   Care should be taken to ensure that the function works in both the
   multi-arch and non- multi-arch cases.  */

struct gdbarch_list
{
  struct gdbarch *gdbarch;
  struct gdbarch_list *next;
};

struct gdbarch_info
{
  /* Use default: NULL (ZERO).  */
  const struct bfd_arch_info *bfd_arch_info;

  /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO).  */
  enum bfd_endian byte_order;

  enum bfd_endian byte_order_for_code;

  /* Use default: NULL (ZERO).  */
  bfd *abfd;

  /* Use default: NULL (ZERO).  */
  void *tdep_info;

  /* Use default: GDB_OSABI_UNINITIALIZED (-1).  */
  enum gdb_osabi osabi;

  /* Use default: NULL (ZERO).  */
  const struct target_desc *target_desc;
};

typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);

/* DEPRECATED - use gdbarch_register() */
extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);

extern void gdbarch_register (enum bfd_architecture architecture,
                              gdbarch_init_ftype *,
                              gdbarch_dump_tdep_ftype *);


/* Return a freshly allocated, NULL terminated, array of the valid
   architecture names.  Since architectures are registered during the
   _initialize phase this function only returns useful information
   once initialization has been completed.  */

extern const char **gdbarch_printable_names (void);


/* Helper function.  Search the list of ARCHES for a GDBARCH that
   matches the information provided by INFO.  */

extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);


/* Helper function.  Create a preliminary \`\`struct gdbarch''.  Perform
   basic initialization using values obtained from the INFO and TDEP
   parameters.  set_gdbarch_*() functions are called to complete the
   initialization of the object.  */

extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);


/* Helper function.  Free a partially-constructed \`\`struct gdbarch''.
   It is assumed that the caller freeds the \`\`struct
   gdbarch_tdep''.  */

extern void gdbarch_free (struct gdbarch *);


/* Helper function.  Allocate memory from the \`\`struct gdbarch''
   obstack.  The memory is freed when the corresponding architecture
   is also freed.  */

extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))

/* Duplicate STRING, returning an equivalent string that's allocated on the
   obstack associated with GDBARCH.  The string is freed when the corresponding
   architecture is also freed.  */

extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);

/* Helper function.  Force an update of the current architecture.

   The actual architecture selected is determined by INFO, \`\`(gdb) set
   architecture'' et.al., the existing architecture and BFD's default
   architecture.  INFO should be initialized to zero and then selected
   fields should be updated.

   Returns non-zero if the update succeeds.  */

extern int gdbarch_update_p (struct gdbarch_info info);


/* Helper function.  Find an architecture matching info.

   INFO should be initialized using gdbarch_info_init, relevant fields
   set, and then finished using gdbarch_info_fill.

   Returns the corresponding architecture, or NULL if no matching
   architecture was found.  */

extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);


/* Helper function.  Set the target gdbarch to "gdbarch".  */

extern void set_target_gdbarch (struct gdbarch *gdbarch);


/* Register per-architecture data-pointer.

   Reserve space for a per-architecture data-pointer.  An identifier
   for the reserved data-pointer is returned.  That identifer should
   be saved in a local static variable.

   Memory for the per-architecture data shall be allocated using
   gdbarch_obstack_zalloc.  That memory will be deleted when the
   corresponding architecture object is deleted.

   When a previously created architecture is re-selected, the
   per-architecture data-pointer for that previous architecture is
   restored.  INIT() is not re-called.

   Multiple registrarants for any architecture are allowed (and
   strongly encouraged).  */

struct gdbarch_data;

typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
                                         struct gdbarch_data *data,
			                 void *pointer);

extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);


/* Set the dynamic target-system-dependent parameters (architecture,
   byte-order, ...) using information found in the BFD.  */

extern void set_gdbarch_from_file (bfd *);


/* Initialize the current architecture to the "first" one we find on
   our list.  */

extern void initialize_current_architecture (void);

/* gdbarch trace variable */
extern unsigned int gdbarch_debug;

extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);

#endif
EOF
exec 1>&2
#../move-if-change new-gdbarch.h gdbarch.h
compare_new gdbarch.h


#
# C file
#

exec > new-gdbarch.c
copyright
cat <<EOF

#include "defs.h"
#include "arch-utils.h"

#include "gdbcmd.h"
#include "inferior.h" 
#include "symcat.h"

#include "floatformat.h"
#include "reggroups.h"
#include "osabi.h"
#include "gdb_obstack.h"
#include "observer.h"
#include "regcache.h"
#include "objfiles.h"
#include "auxv.h"

/* Static function declarations */

static void alloc_gdbarch_data (struct gdbarch *);

/* Non-zero if we want to trace architecture code.  */

#ifndef GDBARCH_DEBUG
#define GDBARCH_DEBUG 0
#endif
unsigned int gdbarch_debug = GDBARCH_DEBUG;
static void
show_gdbarch_debug (struct ui_file *file, int from_tty,
                    struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
}

static const char *
pformat (const struct floatformat **format)
{
  if (format == NULL)
    return "(null)";
  else
    /* Just print out one of them - this is only for diagnostics.  */
    return format[0]->name;
}

static const char *
pstring (const char *string)
{
  if (string == NULL)
    return "(null)";
  return string;
}

/* Helper function to print a list of strings, represented as "const
   char *const *".  The list is printed comma-separated.  */

static char *
pstring_list (const char *const *list)
{
  static char ret[100];
  const char *const *p;
  size_t offset = 0;

  if (list == NULL)
    return "(null)";

  ret[0] = '\0';
  for (p = list; *p != NULL && offset < sizeof (ret); ++p)
    {
      size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
      offset += 2 + s;
    }

  if (offset > 0)
    {
      gdb_assert (offset - 2 < sizeof (ret));
      ret[offset - 2] = '\0';
    }

  return ret;
}

EOF

# gdbarch open the gdbarch object
printf "\n"
printf "/* Maintain the struct gdbarch object.  */\n"
printf "\n"
printf "struct gdbarch\n"
printf "{\n"
printf "  /* Has this architecture been fully initialized?  */\n"
printf "  int initialized_p;\n"
printf "\n"
printf "  /* An obstack bound to the lifetime of the architecture.  */\n"
printf "  struct obstack *obstack;\n"
printf "\n"
printf "  /* basic architectural information.  */\n"
function_list | while do_read
do
    if class_is_info_p
    then
	printf "  ${returntype} ${function};\n"
    fi
done
printf "\n"
printf "  /* target specific vector.  */\n"
printf "  struct gdbarch_tdep *tdep;\n"
printf "  gdbarch_dump_tdep_ftype *dump_tdep;\n"
printf "\n"
printf "  /* per-architecture data-pointers.  */\n"
printf "  unsigned nr_data;\n"
printf "  void **data;\n"
printf "\n"
cat <<EOF
  /* Multi-arch values.

     When extending this structure you must:

     Add the field below.

     Declare set/get functions and define the corresponding
     macro in gdbarch.h.

     gdbarch_alloc(): If zero/NULL is not a suitable default,
     initialize the new field.

     verify_gdbarch(): Confirm that the target updated the field
     correctly.

     gdbarch_dump(): Add a fprintf_unfiltered call so that the new
     field is dumped out

     get_gdbarch(): Implement the set/get functions (probably using
     the macro's as shortcuts).

     */

EOF
function_list | while do_read
do
    if class_is_variable_p
    then
	printf "  ${returntype} ${function};\n"
    elif class_is_function_p
    then
	printf "  gdbarch_${function}_ftype *${function};\n"
    fi
done
printf "};\n"

# Create a new gdbarch struct
cat <<EOF

/* Create a new \`\`struct gdbarch'' based on information provided by
   \`\`struct gdbarch_info''.  */
EOF
printf "\n"
cat <<EOF
struct gdbarch *
gdbarch_alloc (const struct gdbarch_info *info,
               struct gdbarch_tdep *tdep)
{
  struct gdbarch *gdbarch;

  /* Create an obstack for allocating all the per-architecture memory,
     then use that to allocate the architecture vector.  */
  struct obstack *obstack = XNEW (struct obstack);
  obstack_init (obstack);
  gdbarch = XOBNEW (obstack, struct gdbarch);
  memset (gdbarch, 0, sizeof (*gdbarch));
  gdbarch->obstack = obstack;

  alloc_gdbarch_data (gdbarch);

  gdbarch->tdep = tdep;
EOF
printf "\n"
function_list | while do_read
do
    if class_is_info_p
    then
	printf "  gdbarch->${function} = info->${function};\n"
    fi
done
printf "\n"
printf "  /* Force the explicit initialization of these.  */\n"
function_list | while do_read
do
    if class_is_function_p || class_is_variable_p
    then
	if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
	then
	  printf "  gdbarch->${function} = ${predefault};\n"
	fi
    fi
done
cat <<EOF
  /* gdbarch_alloc() */

  return gdbarch;
}
EOF

# Free a gdbarch struct.
printf "\n"
printf "\n"
cat <<EOF
/* Allocate extra space using the per-architecture obstack.  */

void *
gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
{
  void *data = obstack_alloc (arch->obstack, size);

  memset (data, 0, size);
  return data;
}

/* See gdbarch.h.  */

char *
gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
{
  return obstack_strdup (arch->obstack, string);
}


/* Free a gdbarch struct.  This should never happen in normal
   operation --- once you've created a gdbarch, you keep it around.
   However, if an architecture's init function encounters an error
   building the structure, it may need to clean up a partially
   constructed gdbarch.  */

void
gdbarch_free (struct gdbarch *arch)
{
  struct obstack *obstack;

  gdb_assert (arch != NULL);
  gdb_assert (!arch->initialized_p);
  obstack = arch->obstack;
  obstack_free (obstack, 0); /* Includes the ARCH.  */
  xfree (obstack);
}
EOF

# verify a new architecture
cat <<EOF


/* Ensure that all values in a GDBARCH are reasonable.  */

static void
verify_gdbarch (struct gdbarch *gdbarch)
{
  struct ui_file *log;
  struct cleanup *cleanups;
  long length;

  log = mem_fileopen ();
  cleanups = make_cleanup_ui_file_delete (log);
  /* fundamental */
  if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
    fprintf_unfiltered (log, "\n\tbyte-order");
  if (gdbarch->bfd_arch_info == NULL)
    fprintf_unfiltered (log, "\n\tbfd_arch_info");
  /* Check those that need to be defined for the given multi-arch level.  */
EOF
function_list | while do_read
do
    if class_is_function_p || class_is_variable_p
    then
	if [ "x${invalid_p}" = "x0" ]
	then
	    printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
	elif class_is_predicate_p
	then
	    printf "  /* Skip verify of ${function}, has predicate.  */\n"
	# FIXME: See do_read for potential simplification
 	elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
	then
	    printf "  if (${invalid_p})\n"
	    printf "    gdbarch->${function} = ${postdefault};\n"
	elif [ -n "${predefault}" -a -n "${postdefault}" ]
	then
	    printf "  if (gdbarch->${function} == ${predefault})\n"
	    printf "    gdbarch->${function} = ${postdefault};\n"
	elif [ -n "${postdefault}" ]
	then
	    printf "  if (gdbarch->${function} == 0)\n"
	    printf "    gdbarch->${function} = ${postdefault};\n"
	elif [ -n "${invalid_p}" ]
	then
	    printf "  if (${invalid_p})\n"
	    printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
	elif [ -n "${predefault}" ]
	then
	    printf "  if (gdbarch->${function} == ${predefault})\n"
	    printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
	fi
    fi
done
cat <<EOF
  std::string buf = ui_file_as_string (log);
  if (!buf.empty ())
    internal_error (__FILE__, __LINE__,
                    _("verify_gdbarch: the following are invalid ...%s"),
                    buf.c_str ());
  do_cleanups (cleanups);
}
EOF

# dump the structure
printf "\n"
printf "\n"
cat <<EOF
/* Print out the details of the current architecture.  */

void
gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
{
  const char *gdb_nm_file = "<not-defined>";

#if defined (GDB_NM_FILE)
  gdb_nm_file = GDB_NM_FILE;
#endif
  fprintf_unfiltered (file,
                      "gdbarch_dump: GDB_NM_FILE = %s\\n",
                      gdb_nm_file);
EOF
function_list | sort -t: -k 3 | while do_read
do
    # First the predicate
    if class_is_predicate_p
    then
	printf "  fprintf_unfiltered (file,\n"
	printf "                      \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
	printf "                      gdbarch_${function}_p (gdbarch));\n"
    fi
    # Print the corresponding value.
    if class_is_function_p
    then
	printf "  fprintf_unfiltered (file,\n"
	printf "                      \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
	printf "                      host_address_to_string (gdbarch->${function}));\n"
    else
	# It is a variable
	case "${print}:${returntype}" in
	    :CORE_ADDR )
		fmt="%s"
		print="core_addr_to_string_nz (gdbarch->${function})"
		;;
	    :* )
	        fmt="%s"
		print="plongest (gdbarch->${function})"
		;;
	    * )
	        fmt="%s"
		;;
        esac
	printf "  fprintf_unfiltered (file,\n"
	printf "                      \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
	printf "                      ${print});\n"
    fi
done
cat <<EOF
  if (gdbarch->dump_tdep != NULL)
    gdbarch->dump_tdep (gdbarch, file);
}
EOF


# GET/SET
printf "\n"
cat <<EOF
struct gdbarch_tdep *
gdbarch_tdep (struct gdbarch *gdbarch)
{
  if (gdbarch_debug >= 2)
    fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
  return gdbarch->tdep;
}
EOF
printf "\n"
function_list | while do_read
do
    if class_is_predicate_p
    then
	printf "\n"
	printf "int\n"
	printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
	printf "{\n"
        printf "  gdb_assert (gdbarch != NULL);\n"
	printf "  return ${predicate};\n"
	printf "}\n"
    fi
    if class_is_function_p
    then
	printf "\n"
	printf "${returntype}\n"
	if [ "x${formal}" = "xvoid" ]
	then
	  printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
	else
	  printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
	fi
	printf "{\n"
        printf "  gdb_assert (gdbarch != NULL);\n"
	printf "  gdb_assert (gdbarch->${function} != NULL);\n"
	if class_is_predicate_p && test -n "${predefault}"
	then
	    # Allow a call to a function with a predicate.
	    printf "  /* Do not check predicate: ${predicate}, allow call.  */\n"
	fi
	printf "  if (gdbarch_debug >= 2)\n"
	printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
	if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
	then
	    if class_is_multiarch_p
	    then
		params="gdbarch"
	    else
		params=""
	    fi
	else
	    if class_is_multiarch_p
	    then
		params="gdbarch, ${actual}"
	    else
		params="${actual}"
	    fi
        fi
       	if [ "x${returntype}" = "xvoid" ]
	then
	  printf "  gdbarch->${function} (${params});\n"
	else
	  printf "  return gdbarch->${function} (${params});\n"
	fi
	printf "}\n"
	printf "\n"
	printf "void\n"
	printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
        printf "            `echo ${function} | sed -e 's/./ /g'`  gdbarch_${function}_ftype ${function})\n"
	printf "{\n"
	printf "  gdbarch->${function} = ${function};\n"
	printf "}\n"
    elif class_is_variable_p
    then
	printf "\n"
	printf "${returntype}\n"
	printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
	printf "{\n"
        printf "  gdb_assert (gdbarch != NULL);\n"
	if [ "x${invalid_p}" = "x0" ]
	then
	    printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
	elif [ -n "${invalid_p}" ]
	then
	    printf "  /* Check variable is valid.  */\n"
	    printf "  gdb_assert (!(${invalid_p}));\n"
	elif [ -n "${predefault}" ]
	then
	    printf "  /* Check variable changed from pre-default.  */\n"
	    printf "  gdb_assert (gdbarch->${function} != ${predefault});\n"
	fi
	printf "  if (gdbarch_debug >= 2)\n"
	printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
	printf "  return gdbarch->${function};\n"
	printf "}\n"
	printf "\n"
	printf "void\n"
	printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
        printf "            `echo ${function} | sed -e 's/./ /g'`  ${returntype} ${function})\n"
	printf "{\n"
	printf "  gdbarch->${function} = ${function};\n"
	printf "}\n"
    elif class_is_info_p
    then
	printf "\n"
	printf "${returntype}\n"
	printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
	printf "{\n"
        printf "  gdb_assert (gdbarch != NULL);\n"
	printf "  if (gdbarch_debug >= 2)\n"
	printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
	printf "  return gdbarch->${function};\n"
	printf "}\n"
    fi
done

# All the trailing guff
cat <<EOF


/* Keep a registry of per-architecture data-pointers required by GDB
   modules.  */

struct gdbarch_data
{
  unsigned index;
  int init_p;
  gdbarch_data_pre_init_ftype *pre_init;
  gdbarch_data_post_init_ftype *post_init;
};

struct gdbarch_data_registration
{
  struct gdbarch_data *data;
  struct gdbarch_data_registration *next;
};

struct gdbarch_data_registry
{
  unsigned nr;
  struct gdbarch_data_registration *registrations;
};

struct gdbarch_data_registry gdbarch_data_registry =
{
  0, NULL,
};

static struct gdbarch_data *
gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
		       gdbarch_data_post_init_ftype *post_init)
{
  struct gdbarch_data_registration **curr;

  /* Append the new registration.  */
  for (curr = &gdbarch_data_registry.registrations;
       (*curr) != NULL;
       curr = &(*curr)->next);
  (*curr) = XNEW (struct gdbarch_data_registration);
  (*curr)->next = NULL;
  (*curr)->data = XNEW (struct gdbarch_data);
  (*curr)->data->index = gdbarch_data_registry.nr++;
  (*curr)->data->pre_init = pre_init;
  (*curr)->data->post_init = post_init;
  (*curr)->data->init_p = 1;
  return (*curr)->data;
}

struct gdbarch_data *
gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
{
  return gdbarch_data_register (pre_init, NULL);
}

struct gdbarch_data *
gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
{
  return gdbarch_data_register (NULL, post_init);
}

/* Create/delete the gdbarch data vector.  */

static void
alloc_gdbarch_data (struct gdbarch *gdbarch)
{
  gdb_assert (gdbarch->data == NULL);
  gdbarch->nr_data = gdbarch_data_registry.nr;
  gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
}

/* Initialize the current value of the specified per-architecture
   data-pointer.  */

void
deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
			     struct gdbarch_data *data,
			     void *pointer)
{
  gdb_assert (data->index < gdbarch->nr_data);
  gdb_assert (gdbarch->data[data->index] == NULL);
  gdb_assert (data->pre_init == NULL);
  gdbarch->data[data->index] = pointer;
}

/* Return the current value of the specified per-architecture
   data-pointer.  */

void *
gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
{
  gdb_assert (data->index < gdbarch->nr_data);
  if (gdbarch->data[data->index] == NULL)
    {
      /* The data-pointer isn't initialized, call init() to get a
	 value.  */
      if (data->pre_init != NULL)
	/* Mid architecture creation: pass just the obstack, and not
	   the entire architecture, as that way it isn't possible for
	   pre-init code to refer to undefined architecture
	   fields.  */
	gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
      else if (gdbarch->initialized_p
	       && data->post_init != NULL)
	/* Post architecture creation: pass the entire architecture
	   (as all fields are valid), but be careful to also detect
	   recursive references.  */
	{
	  gdb_assert (data->init_p);
	  data->init_p = 0;
	  gdbarch->data[data->index] = data->post_init (gdbarch);
	  data->init_p = 1;
	}
      else
	/* The architecture initialization hasn't completed - punt -
	 hope that the caller knows what they are doing.  Once
	 deprecated_set_gdbarch_data has been initialized, this can be
	 changed to an internal error.  */
	return NULL;
      gdb_assert (gdbarch->data[data->index] != NULL);
    }
  return gdbarch->data[data->index];
}


/* Keep a registry of the architectures known by GDB.  */

struct gdbarch_registration
{
  enum bfd_architecture bfd_architecture;
  gdbarch_init_ftype *init;
  gdbarch_dump_tdep_ftype *dump_tdep;
  struct gdbarch_list *arches;
  struct gdbarch_registration *next;
};

static struct gdbarch_registration *gdbarch_registry = NULL;

static void
append_name (const char ***buf, int *nr, const char *name)
{
  *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
  (*buf)[*nr] = name;
  *nr += 1;
}

const char **
gdbarch_printable_names (void)
{
  /* Accumulate a list of names based on the registed list of
     architectures.  */
  int nr_arches = 0;
  const char **arches = NULL;
  struct gdbarch_registration *rego;

  for (rego = gdbarch_registry;
       rego != NULL;
       rego = rego->next)
    {
      const struct bfd_arch_info *ap;
      ap = bfd_lookup_arch (rego->bfd_architecture, 0);
      if (ap == NULL)
        internal_error (__FILE__, __LINE__,
                        _("gdbarch_architecture_names: multi-arch unknown"));
      do
        {
          append_name (&arches, &nr_arches, ap->printable_name);
          ap = ap->next;
        }
      while (ap != NULL);
    }
  append_name (&arches, &nr_arches, NULL);
  return arches;
}


void
gdbarch_register (enum bfd_architecture bfd_architecture,
                  gdbarch_init_ftype *init,
		  gdbarch_dump_tdep_ftype *dump_tdep)
{
  struct gdbarch_registration **curr;
  const struct bfd_arch_info *bfd_arch_info;

  /* Check that BFD recognizes this architecture */
  bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
  if (bfd_arch_info == NULL)
    {
      internal_error (__FILE__, __LINE__,
                      _("gdbarch: Attempt to register "
			"unknown architecture (%d)"),
                      bfd_architecture);
    }
  /* Check that we haven't seen this architecture before.  */
  for (curr = &gdbarch_registry;
       (*curr) != NULL;
       curr = &(*curr)->next)
    {
      if (bfd_architecture == (*curr)->bfd_architecture)
	internal_error (__FILE__, __LINE__,
                        _("gdbarch: Duplicate registration "
			  "of architecture (%s)"),
	                bfd_arch_info->printable_name);
    }
  /* log it */
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
			bfd_arch_info->printable_name,
			host_address_to_string (init));
  /* Append it */
  (*curr) = XNEW (struct gdbarch_registration);
  (*curr)->bfd_architecture = bfd_architecture;
  (*curr)->init = init;
  (*curr)->dump_tdep = dump_tdep;
  (*curr)->arches = NULL;
  (*curr)->next = NULL;
}

void
register_gdbarch_init (enum bfd_architecture bfd_architecture,
		       gdbarch_init_ftype *init)
{
  gdbarch_register (bfd_architecture, init, NULL);
}


/* Look for an architecture using gdbarch_info.  */

struct gdbarch_list *
gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
                             const struct gdbarch_info *info)
{
  for (; arches != NULL; arches = arches->next)
    {
      if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
	continue;
      if (info->byte_order != arches->gdbarch->byte_order)
	continue;
      if (info->osabi != arches->gdbarch->osabi)
	continue;
      if (info->target_desc != arches->gdbarch->target_desc)
	continue;
      return arches;
    }
  return NULL;
}


/* Find an architecture that matches the specified INFO.  Create a new
   architecture if needed.  Return that new architecture.  */

struct gdbarch *
gdbarch_find_by_info (struct gdbarch_info info)
{
  struct gdbarch *new_gdbarch;
  struct gdbarch_registration *rego;

  /* Fill in missing parts of the INFO struct using a number of
     sources: "set ..."; INFOabfd supplied; and the global
     defaults.  */
  gdbarch_info_fill (&info);

  /* Must have found some sort of architecture.  */
  gdb_assert (info.bfd_arch_info != NULL);

  if (gdbarch_debug)
    {
      fprintf_unfiltered (gdb_stdlog,
			  "gdbarch_find_by_info: info.bfd_arch_info %s\n",
			  (info.bfd_arch_info != NULL
			   ? info.bfd_arch_info->printable_name
			   : "(null)"));
      fprintf_unfiltered (gdb_stdlog,
			  "gdbarch_find_by_info: info.byte_order %d (%s)\n",
			  info.byte_order,
			  (info.byte_order == BFD_ENDIAN_BIG ? "big"
			   : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
			   : "default"));
      fprintf_unfiltered (gdb_stdlog,
			  "gdbarch_find_by_info: info.osabi %d (%s)\n",
			  info.osabi, gdbarch_osabi_name (info.osabi));
      fprintf_unfiltered (gdb_stdlog,
			  "gdbarch_find_by_info: info.abfd %s\n",
			  host_address_to_string (info.abfd));
      fprintf_unfiltered (gdb_stdlog,
			  "gdbarch_find_by_info: info.tdep_info %s\n",
			  host_address_to_string (info.tdep_info));
    }

  /* Find the tdep code that knows about this architecture.  */
  for (rego = gdbarch_registry;
       rego != NULL;
       rego = rego->next)
    if (rego->bfd_architecture == info.bfd_arch_info->arch)
      break;
  if (rego == NULL)
    {
      if (gdbarch_debug)
	fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
			    "No matching architecture\n");
      return 0;
    }

  /* Ask the tdep code for an architecture that matches "info".  */
  new_gdbarch = rego->init (info, rego->arches);

  /* Did the tdep code like it?  No.  Reject the change and revert to
     the old architecture.  */
  if (new_gdbarch == NULL)
    {
      if (gdbarch_debug)
	fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
			    "Target rejected architecture\n");
      return NULL;
    }

  /* Is this a pre-existing architecture (as determined by already
     being initialized)?  Move it to the front of the architecture
     list (keeping the list sorted Most Recently Used).  */
  if (new_gdbarch->initialized_p)
    {
      struct gdbarch_list **list;
      struct gdbarch_list *self;
      if (gdbarch_debug)
	fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
			    "Previous architecture %s (%s) selected\n",
			    host_address_to_string (new_gdbarch),
			    new_gdbarch->bfd_arch_info->printable_name);
      /* Find the existing arch in the list.  */
      for (list = &rego->arches;
	   (*list) != NULL && (*list)->gdbarch != new_gdbarch;
	   list = &(*list)->next);
      /* It had better be in the list of architectures.  */
      gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
      /* Unlink SELF.  */
      self = (*list);
      (*list) = self->next;
      /* Insert SELF at the front.  */
      self->next = rego->arches;
      rego->arches = self;
      /* Return it.  */
      return new_gdbarch;
    }

  /* It's a new architecture.  */
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
			"New architecture %s (%s) selected\n",
			host_address_to_string (new_gdbarch),
			new_gdbarch->bfd_arch_info->printable_name);
  
  /* Insert the new architecture into the front of the architecture
     list (keep the list sorted Most Recently Used).  */
  {
    struct gdbarch_list *self = XNEW (struct gdbarch_list);
    self->next = rego->arches;
    self->gdbarch = new_gdbarch;
    rego->arches = self;
  }    

  /* Check that the newly installed architecture is valid.  Plug in
     any post init values.  */
  new_gdbarch->dump_tdep = rego->dump_tdep;
  verify_gdbarch (new_gdbarch);
  new_gdbarch->initialized_p = 1;

  if (gdbarch_debug)
    gdbarch_dump (new_gdbarch, gdb_stdlog);

  return new_gdbarch;
}

/* Make the specified architecture current.  */

void
set_target_gdbarch (struct gdbarch *new_gdbarch)
{
  gdb_assert (new_gdbarch != NULL);
  gdb_assert (new_gdbarch->initialized_p);
  current_inferior ()->gdbarch = new_gdbarch;
  observer_notify_architecture_changed (new_gdbarch);
  registers_changed ();
}

/* Return the current inferior's arch.  */

struct gdbarch *
target_gdbarch (void)
{
  return current_inferior ()->gdbarch;
}

extern void _initialize_gdbarch (void);

void
_initialize_gdbarch (void)
{
  add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
Set architecture debugging."), _("\\
Show architecture debugging."), _("\\
When non-zero, architecture debugging is enabled."),
                            NULL,
                            show_gdbarch_debug,
                            &setdebuglist, &showdebuglist);
}
EOF

# close things off
exec 1>&2
#../move-if-change new-gdbarch.c gdbarch.c
compare_new gdbarch.c