1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
|
/* Target-dependent code for GDB, the GNU debugger.
Copyright (C) 1986-2014 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "objfiles.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regset.h"
#include "doublest.h"
#include "value.h"
#include "parser-defs.h"
#include "osabi.h"
#include "infcall.h"
#include "sim-regno.h"
#include "gdb/sim-ppc.h"
#include "reggroups.h"
#include "dwarf2-frame.h"
#include "target-descriptions.h"
#include "user-regs.h"
#include "libbfd.h" /* for bfd_default_set_arch_mach */
#include "coff/internal.h" /* for libcoff.h */
#include "libcoff.h" /* for xcoff_data */
#include "coff/xcoff.h"
#include "libxcoff.h"
#include "elf-bfd.h"
#include "elf/ppc.h"
#include "solib-svr4.h"
#include "ppc-tdep.h"
#include "ppc-ravenscar-thread.h"
#include "gdb_assert.h"
#include "dis-asm.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "features/rs6000/powerpc-32.c"
#include "features/rs6000/powerpc-altivec32.c"
#include "features/rs6000/powerpc-vsx32.c"
#include "features/rs6000/powerpc-403.c"
#include "features/rs6000/powerpc-403gc.c"
#include "features/rs6000/powerpc-405.c"
#include "features/rs6000/powerpc-505.c"
#include "features/rs6000/powerpc-601.c"
#include "features/rs6000/powerpc-602.c"
#include "features/rs6000/powerpc-603.c"
#include "features/rs6000/powerpc-604.c"
#include "features/rs6000/powerpc-64.c"
#include "features/rs6000/powerpc-altivec64.c"
#include "features/rs6000/powerpc-vsx64.c"
#include "features/rs6000/powerpc-7400.c"
#include "features/rs6000/powerpc-750.c"
#include "features/rs6000/powerpc-860.c"
#include "features/rs6000/powerpc-e500.c"
#include "features/rs6000/rs6000.c"
/* Determine if regnum is an SPE pseudo-register. */
#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_ev0_regnum \
&& (regnum) < (tdep)->ppc_ev0_regnum + 32)
/* Determine if regnum is a decimal float pseudo-register. */
#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_dl0_regnum \
&& (regnum) < (tdep)->ppc_dl0_regnum + 16)
/* Determine if regnum is a POWER7 VSX register. */
#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_vsr0_regnum \
&& (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
/* Determine if regnum is a POWER7 Extended FP register. */
#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
&& (regnum) >= (tdep)->ppc_efpr0_regnum \
&& (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
/* The list of available "set powerpc ..." and "show powerpc ..."
commands. */
static struct cmd_list_element *setpowerpccmdlist = NULL;
static struct cmd_list_element *showpowerpccmdlist = NULL;
static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
static const char *const powerpc_vector_strings[] =
{
"auto",
"generic",
"altivec",
"spe",
NULL
};
/* A variable that can be configured by the user. */
static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
static const char *powerpc_vector_abi_string = "auto";
/* To be used by skip_prologue. */
struct rs6000_framedata
{
int offset; /* total size of frame --- the distance
by which we decrement sp to allocate
the frame */
int saved_gpr; /* smallest # of saved gpr */
unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
int saved_fpr; /* smallest # of saved fpr */
int saved_vr; /* smallest # of saved vr */
int saved_ev; /* smallest # of saved ev */
int alloca_reg; /* alloca register number (frame ptr) */
char frameless; /* true if frameless functions. */
char nosavedpc; /* true if pc not saved. */
char used_bl; /* true if link register clobbered */
int gpr_offset; /* offset of saved gprs from prev sp */
int fpr_offset; /* offset of saved fprs from prev sp */
int vr_offset; /* offset of saved vrs from prev sp */
int ev_offset; /* offset of saved evs from prev sp */
int lr_offset; /* offset of saved lr */
int lr_register; /* register of saved lr, if trustworthy */
int cr_offset; /* offset of saved cr */
int vrsave_offset; /* offset of saved vrsave register */
};
/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
int
vsx_register_p (struct gdbarch *gdbarch, int regno)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (tdep->ppc_vsr0_regnum < 0)
return 0;
else
return (regno >= tdep->ppc_vsr0_upper_regnum && regno
<= tdep->ppc_vsr0_upper_regnum + 31);
}
/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
int
altivec_register_p (struct gdbarch *gdbarch, int regno)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
return 0;
else
return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
}
/* Return true if REGNO is an SPE register, false otherwise. */
int
spe_register_p (struct gdbarch *gdbarch, int regno)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* Is it a reference to EV0 -- EV31, and do we have those? */
if (IS_SPE_PSEUDOREG (tdep, regno))
return 1;
/* Is it a reference to one of the raw upper GPR halves? */
if (tdep->ppc_ev0_upper_regnum >= 0
&& tdep->ppc_ev0_upper_regnum <= regno
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
return 1;
/* Is it a reference to the 64-bit accumulator, and do we have that? */
if (tdep->ppc_acc_regnum >= 0
&& tdep->ppc_acc_regnum == regno)
return 1;
/* Is it a reference to the SPE floating-point status and control register,
and do we have that? */
if (tdep->ppc_spefscr_regnum >= 0
&& tdep->ppc_spefscr_regnum == regno)
return 1;
return 0;
}
/* Return non-zero if the architecture described by GDBARCH has
floating-point registers (f0 --- f31 and fpscr). */
int
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
return (tdep->ppc_fp0_regnum >= 0
&& tdep->ppc_fpscr_regnum >= 0);
}
/* Return non-zero if the architecture described by GDBARCH has
VSX registers (vsr0 --- vsr63). */
static int
ppc_vsx_support_p (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
return tdep->ppc_vsr0_regnum >= 0;
}
/* Return non-zero if the architecture described by GDBARCH has
Altivec registers (vr0 --- vr31, vrsave and vscr). */
int
ppc_altivec_support_p (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
return (tdep->ppc_vr0_regnum >= 0
&& tdep->ppc_vrsave_regnum >= 0);
}
/* Check that TABLE[GDB_REGNO] is not already initialized, and then
set it to SIM_REGNO.
This is a helper function for init_sim_regno_table, constructing
the table mapping GDB register numbers to sim register numbers; we
initialize every element in that table to -1 before we start
filling it in. */
static void
set_sim_regno (int *table, int gdb_regno, int sim_regno)
{
/* Make sure we don't try to assign any given GDB register a sim
register number more than once. */
gdb_assert (table[gdb_regno] == -1);
table[gdb_regno] = sim_regno;
}
/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
numbers to simulator register numbers, based on the values placed
in the ARCH->tdep->ppc_foo_regnum members. */
static void
init_sim_regno_table (struct gdbarch *arch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
int total_regs = gdbarch_num_regs (arch);
int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
int i;
static const char *const segment_regs[] = {
"sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
};
/* Presume that all registers not explicitly mentioned below are
unavailable from the sim. */
for (i = 0; i < total_regs; i++)
sim_regno[i] = -1;
/* General-purpose registers. */
for (i = 0; i < ppc_num_gprs; i++)
set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
/* Floating-point registers. */
if (tdep->ppc_fp0_regnum >= 0)
for (i = 0; i < ppc_num_fprs; i++)
set_sim_regno (sim_regno,
tdep->ppc_fp0_regnum + i,
sim_ppc_f0_regnum + i);
if (tdep->ppc_fpscr_regnum >= 0)
set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
/* Segment registers. */
for (i = 0; i < ppc_num_srs; i++)
{
int gdb_regno;
gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
if (gdb_regno >= 0)
set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
}
/* Altivec registers. */
if (tdep->ppc_vr0_regnum >= 0)
{
for (i = 0; i < ppc_num_vrs; i++)
set_sim_regno (sim_regno,
tdep->ppc_vr0_regnum + i,
sim_ppc_vr0_regnum + i);
/* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
we can treat this more like the other cases. */
set_sim_regno (sim_regno,
tdep->ppc_vr0_regnum + ppc_num_vrs,
sim_ppc_vscr_regnum);
}
/* vsave is a special-purpose register, so the code below handles it. */
/* SPE APU (E500) registers. */
if (tdep->ppc_ev0_upper_regnum >= 0)
for (i = 0; i < ppc_num_gprs; i++)
set_sim_regno (sim_regno,
tdep->ppc_ev0_upper_regnum + i,
sim_ppc_rh0_regnum + i);
if (tdep->ppc_acc_regnum >= 0)
set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
/* spefscr is a special-purpose register, so the code below handles it. */
#ifdef WITH_SIM
/* Now handle all special-purpose registers. Verify that they
haven't mistakenly been assigned numbers by any of the above
code. */
for (i = 0; i < sim_ppc_num_sprs; i++)
{
const char *spr_name = sim_spr_register_name (i);
int gdb_regno = -1;
if (spr_name != NULL)
gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
if (gdb_regno != -1)
set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
}
#endif
/* Drop the initialized array into place. */
tdep->sim_regno = sim_regno;
}
/* Given a GDB register number REG, return the corresponding SIM
register number. */
static int
rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int sim_regno;
if (tdep->sim_regno == NULL)
init_sim_regno_table (gdbarch);
gdb_assert (0 <= reg
&& reg <= gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch));
sim_regno = tdep->sim_regno[reg];
if (sim_regno >= 0)
return sim_regno;
else
return LEGACY_SIM_REGNO_IGNORE;
}
/* Register set support functions. */
/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
Write the register to REGCACHE. */
void
ppc_supply_reg (struct regcache *regcache, int regnum,
const gdb_byte *regs, size_t offset, int regsize)
{
if (regnum != -1 && offset != -1)
{
if (regsize > 4)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int gdb_regsize = register_size (gdbarch, regnum);
if (gdb_regsize < regsize
&& gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset += regsize - gdb_regsize;
}
regcache_raw_supply (regcache, regnum, regs + offset);
}
}
/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
in a field REGSIZE wide. Zero pad as necessary. */
void
ppc_collect_reg (const struct regcache *regcache, int regnum,
gdb_byte *regs, size_t offset, int regsize)
{
if (regnum != -1 && offset != -1)
{
if (regsize > 4)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int gdb_regsize = register_size (gdbarch, regnum);
if (gdb_regsize < regsize)
{
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
memset (regs + offset, 0, regsize - gdb_regsize);
offset += regsize - gdb_regsize;
}
else
memset (regs + offset + regsize - gdb_regsize, 0,
regsize - gdb_regsize);
}
}
regcache_raw_collect (regcache, regnum, regs + offset);
}
}
static int
ppc_greg_offset (struct gdbarch *gdbarch,
struct gdbarch_tdep *tdep,
const struct ppc_reg_offsets *offsets,
int regnum,
int *regsize)
{
*regsize = offsets->gpr_size;
if (regnum >= tdep->ppc_gp0_regnum
&& regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
return (offsets->r0_offset
+ (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
if (regnum == gdbarch_pc_regnum (gdbarch))
return offsets->pc_offset;
if (regnum == tdep->ppc_ps_regnum)
return offsets->ps_offset;
if (regnum == tdep->ppc_lr_regnum)
return offsets->lr_offset;
if (regnum == tdep->ppc_ctr_regnum)
return offsets->ctr_offset;
*regsize = offsets->xr_size;
if (regnum == tdep->ppc_cr_regnum)
return offsets->cr_offset;
if (regnum == tdep->ppc_xer_regnum)
return offsets->xer_offset;
if (regnum == tdep->ppc_mq_regnum)
return offsets->mq_offset;
return -1;
}
static int
ppc_fpreg_offset (struct gdbarch_tdep *tdep,
const struct ppc_reg_offsets *offsets,
int regnum)
{
if (regnum >= tdep->ppc_fp0_regnum
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
if (regnum == tdep->ppc_fpscr_regnum)
return offsets->fpscr_offset;
return -1;
}
static int
ppc_vrreg_offset (struct gdbarch_tdep *tdep,
const struct ppc_reg_offsets *offsets,
int regnum)
{
if (regnum >= tdep->ppc_vr0_regnum
&& regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
if (regnum == tdep->ppc_vrsave_regnum - 1)
return offsets->vscr_offset;
if (regnum == tdep->ppc_vrsave_regnum)
return offsets->vrsave_offset;
return -1;
}
/* Supply register REGNUM in the general-purpose register set REGSET
from the buffer specified by GREGS and LEN to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
void
ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
const struct ppc_reg_offsets *offsets = regset->descr;
size_t offset;
int regsize;
if (regnum == -1)
{
int i;
int gpr_size = offsets->gpr_size;
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
i++, offset += gpr_size)
ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
gregs, offsets->pc_offset, gpr_size);
ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
gregs, offsets->ps_offset, gpr_size);
ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
gregs, offsets->lr_offset, gpr_size);
ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
gregs, offsets->ctr_offset, gpr_size);
ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
gregs, offsets->cr_offset, offsets->xr_size);
ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
gregs, offsets->xer_offset, offsets->xr_size);
ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
gregs, offsets->mq_offset, offsets->xr_size);
return;
}
offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
}
/* Supply register REGNUM in the floating-point register set REGSET
from the buffer specified by FPREGS and LEN to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
void
ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
int regnum, const void *fpregs, size_t len)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep;
const struct ppc_reg_offsets *offsets;
size_t offset;
if (!ppc_floating_point_unit_p (gdbarch))
return;
tdep = gdbarch_tdep (gdbarch);
offsets = regset->descr;
if (regnum == -1)
{
int i;
for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
i++, offset += 8)
ppc_supply_reg (regcache, i, fpregs, offset, 8);
ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
fpregs, offsets->fpscr_offset, offsets->fpscr_size);
return;
}
offset = ppc_fpreg_offset (tdep, offsets, regnum);
ppc_supply_reg (regcache, regnum, fpregs, offset,
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
}
/* Supply register REGNUM in the VSX register set REGSET
from the buffer specified by VSXREGS and LEN to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
void
ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
int regnum, const void *vsxregs, size_t len)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep;
if (!ppc_vsx_support_p (gdbarch))
return;
tdep = gdbarch_tdep (gdbarch);
if (regnum == -1)
{
int i;
for (i = tdep->ppc_vsr0_upper_regnum;
i < tdep->ppc_vsr0_upper_regnum + 32;
i++)
ppc_supply_reg (regcache, i, vsxregs, 0, 8);
return;
}
else
ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
}
/* Supply register REGNUM in the Altivec register set REGSET
from the buffer specified by VRREGS and LEN to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
void
ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
int regnum, const void *vrregs, size_t len)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep;
const struct ppc_reg_offsets *offsets;
size_t offset;
if (!ppc_altivec_support_p (gdbarch))
return;
tdep = gdbarch_tdep (gdbarch);
offsets = regset->descr;
if (regnum == -1)
{
int i;
for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
i < tdep->ppc_vr0_regnum + ppc_num_vrs;
i++, offset += 16)
ppc_supply_reg (regcache, i, vrregs, offset, 16);
ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
vrregs, offsets->vscr_offset, 4);
ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
vrregs, offsets->vrsave_offset, 4);
return;
}
offset = ppc_vrreg_offset (tdep, offsets, regnum);
if (regnum != tdep->ppc_vrsave_regnum
&& regnum != tdep->ppc_vrsave_regnum - 1)
ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
else
ppc_supply_reg (regcache, regnum,
vrregs, offset, 4);
}
/* Collect register REGNUM in the general-purpose register set
REGSET from register cache REGCACHE into the buffer specified by
GREGS and LEN. If REGNUM is -1, do this for all registers in
REGSET. */
void
ppc_collect_gregset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
const struct ppc_reg_offsets *offsets = regset->descr;
size_t offset;
int regsize;
if (regnum == -1)
{
int i;
int gpr_size = offsets->gpr_size;
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
i++, offset += gpr_size)
ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
gregs, offsets->pc_offset, gpr_size);
ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
gregs, offsets->ps_offset, gpr_size);
ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
gregs, offsets->lr_offset, gpr_size);
ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
gregs, offsets->ctr_offset, gpr_size);
ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
gregs, offsets->cr_offset, offsets->xr_size);
ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
gregs, offsets->xer_offset, offsets->xr_size);
ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
gregs, offsets->mq_offset, offsets->xr_size);
return;
}
offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
}
/* Collect register REGNUM in the floating-point register set
REGSET from register cache REGCACHE into the buffer specified by
FPREGS and LEN. If REGNUM is -1, do this for all registers in
REGSET. */
void
ppc_collect_fpregset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *fpregs, size_t len)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep;
const struct ppc_reg_offsets *offsets;
size_t offset;
if (!ppc_floating_point_unit_p (gdbarch))
return;
tdep = gdbarch_tdep (gdbarch);
offsets = regset->descr;
if (regnum == -1)
{
int i;
for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
i++, offset += 8)
ppc_collect_reg (regcache, i, fpregs, offset, 8);
ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
fpregs, offsets->fpscr_offset, offsets->fpscr_size);
return;
}
offset = ppc_fpreg_offset (tdep, offsets, regnum);
ppc_collect_reg (regcache, regnum, fpregs, offset,
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
}
/* Collect register REGNUM in the VSX register set
REGSET from register cache REGCACHE into the buffer specified by
VSXREGS and LEN. If REGNUM is -1, do this for all registers in
REGSET. */
void
ppc_collect_vsxregset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *vsxregs, size_t len)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep;
if (!ppc_vsx_support_p (gdbarch))
return;
tdep = gdbarch_tdep (gdbarch);
if (regnum == -1)
{
int i;
for (i = tdep->ppc_vsr0_upper_regnum;
i < tdep->ppc_vsr0_upper_regnum + 32;
i++)
ppc_collect_reg (regcache, i, vsxregs, 0, 8);
return;
}
else
ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
}
/* Collect register REGNUM in the Altivec register set
REGSET from register cache REGCACHE into the buffer specified by
VRREGS and LEN. If REGNUM is -1, do this for all registers in
REGSET. */
void
ppc_collect_vrregset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *vrregs, size_t len)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep;
const struct ppc_reg_offsets *offsets;
size_t offset;
if (!ppc_altivec_support_p (gdbarch))
return;
tdep = gdbarch_tdep (gdbarch);
offsets = regset->descr;
if (regnum == -1)
{
int i;
for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
i < tdep->ppc_vr0_regnum + ppc_num_vrs;
i++, offset += 16)
ppc_collect_reg (regcache, i, vrregs, offset, 16);
ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
vrregs, offsets->vscr_offset, 4);
ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
vrregs, offsets->vrsave_offset, 4);
return;
}
offset = ppc_vrreg_offset (tdep, offsets, regnum);
if (regnum != tdep->ppc_vrsave_regnum
&& regnum != tdep->ppc_vrsave_regnum - 1)
ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
else
ppc_collect_reg (regcache, regnum,
vrregs, offset, 4);
}
static int
insn_changes_sp_or_jumps (unsigned long insn)
{
int opcode = (insn >> 26) & 0x03f;
int sd = (insn >> 21) & 0x01f;
int a = (insn >> 16) & 0x01f;
int subcode = (insn >> 1) & 0x3ff;
/* Changes the stack pointer. */
/* NOTE: There are many ways to change the value of a given register.
The ways below are those used when the register is R1, the SP,
in a funtion's epilogue. */
if (opcode == 31 && subcode == 444 && a == 1)
return 1; /* mr R1,Rn */
if (opcode == 14 && sd == 1)
return 1; /* addi R1,Rn,simm */
if (opcode == 58 && sd == 1)
return 1; /* ld R1,ds(Rn) */
/* Transfers control. */
if (opcode == 18)
return 1; /* b */
if (opcode == 16)
return 1; /* bc */
if (opcode == 19 && subcode == 16)
return 1; /* bclr */
if (opcode == 19 && subcode == 528)
return 1; /* bcctr */
return 0;
}
/* Return true if we are in the function's epilogue, i.e. after the
instruction that destroyed the function's stack frame.
1) scan forward from the point of execution:
a) If you find an instruction that modifies the stack pointer
or transfers control (except a return), execution is not in
an epilogue, return.
b) Stop scanning if you find a return instruction or reach the
end of the function or reach the hard limit for the size of
an epilogue.
2) scan backward from the point of execution:
a) If you find an instruction that modifies the stack pointer,
execution *is* in an epilogue, return.
b) Stop scanning if you reach an instruction that transfers
control or the beginning of the function or reach the hard
limit for the size of an epilogue. */
static int
rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bfd_byte insn_buf[PPC_INSN_SIZE];
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
unsigned long insn;
struct frame_info *curfrm;
/* Find the search limits based on function boundaries and hard limit. */
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
return 0;
epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
if (epilogue_start < func_start) epilogue_start = func_start;
epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
if (epilogue_end > func_end) epilogue_end = func_end;
curfrm = get_current_frame ();
/* Scan forward until next 'blr'. */
for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
{
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
return 0;
insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
if (insn == 0x4e800020)
break;
/* Assume a bctr is a tail call unless it points strictly within
this function. */
if (insn == 0x4e800420)
{
CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
tdep->ppc_ctr_regnum);
if (ctr > func_start && ctr < func_end)
return 0;
else
break;
}
if (insn_changes_sp_or_jumps (insn))
return 0;
}
/* Scan backward until adjustment to stack pointer (R1). */
for (scan_pc = pc - PPC_INSN_SIZE;
scan_pc >= epilogue_start;
scan_pc -= PPC_INSN_SIZE)
{
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
return 0;
insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
if (insn_changes_sp_or_jumps (insn))
return 1;
}
return 0;
}
/* Get the ith function argument for the current function. */
static CORE_ADDR
rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
struct type *type)
{
return get_frame_register_unsigned (frame, 3 + argi);
}
/* Sequence of bytes for breakpoint instruction. */
static const unsigned char *
rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
int *bp_size)
{
static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
*bp_size = 4;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
return big_breakpoint;
else
return little_breakpoint;
}
/* Instruction masks for displaced stepping. */
#define BRANCH_MASK 0xfc000000
#define BP_MASK 0xFC0007FE
#define B_INSN 0x48000000
#define BC_INSN 0x40000000
#define BXL_INSN 0x4c000000
#define BP_INSN 0x7C000008
/* Fix up the state of registers and memory after having single-stepped
a displaced instruction. */
static void
ppc_displaced_step_fixup (struct gdbarch *gdbarch,
struct displaced_step_closure *closure,
CORE_ADDR from, CORE_ADDR to,
struct regcache *regs)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
/* Since we use simple_displaced_step_copy_insn, our closure is a
copy of the instruction. */
ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
PPC_INSN_SIZE, byte_order);
ULONGEST opcode = 0;
/* Offset for non PC-relative instructions. */
LONGEST offset = PPC_INSN_SIZE;
opcode = insn & BRANCH_MASK;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: (ppc) fixup (%s, %s)\n",
paddress (gdbarch, from), paddress (gdbarch, to));
/* Handle PC-relative branch instructions. */
if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
{
ULONGEST current_pc;
/* Read the current PC value after the instruction has been executed
in a displaced location. Calculate the offset to be applied to the
original PC value before the displaced stepping. */
regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
¤t_pc);
offset = current_pc - to;
if (opcode != BXL_INSN)
{
/* Check for AA bit indicating whether this is an absolute
addressing or PC-relative (1: absolute, 0: relative). */
if (!(insn & 0x2))
{
/* PC-relative addressing is being used in the branch. */
if (debug_displaced)
fprintf_unfiltered
(gdb_stdlog,
"displaced: (ppc) branch instruction: %s\n"
"displaced: (ppc) adjusted PC from %s to %s\n",
paddress (gdbarch, insn), paddress (gdbarch, current_pc),
paddress (gdbarch, from + offset));
regcache_cooked_write_unsigned (regs,
gdbarch_pc_regnum (gdbarch),
from + offset);
}
}
else
{
/* If we're here, it means we have a branch to LR or CTR. If the
branch was taken, the offset is probably greater than 4 (the next
instruction), so it's safe to assume that an offset of 4 means we
did not take the branch. */
if (offset == PPC_INSN_SIZE)
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
from + PPC_INSN_SIZE);
}
/* Check for LK bit indicating whether we should set the link
register to point to the next instruction
(1: Set, 0: Don't set). */
if (insn & 0x1)
{
/* Link register needs to be set to the next instruction's PC. */
regcache_cooked_write_unsigned (regs,
gdbarch_tdep (gdbarch)->ppc_lr_regnum,
from + PPC_INSN_SIZE);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: (ppc) adjusted LR to %s\n",
paddress (gdbarch, from + PPC_INSN_SIZE));
}
}
/* Check for breakpoints in the inferior. If we've found one, place the PC
right at the breakpoint instruction. */
else if ((insn & BP_MASK) == BP_INSN)
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
else
/* Handle any other instructions that do not fit in the categories above. */
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
from + offset);
}
/* Always use hardware single-stepping to execute the
displaced instruction. */
static int
ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
struct displaced_step_closure *closure)
{
return 1;
}
/* Instruction masks used during single-stepping of atomic sequences. */
#define LWARX_MASK 0xfc0007fe
#define LWARX_INSTRUCTION 0x7c000028
#define LDARX_INSTRUCTION 0x7c0000A8
#define STWCX_MASK 0xfc0007ff
#define STWCX_INSTRUCTION 0x7c00012d
#define STDCX_INSTRUCTION 0x7c0001ad
/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
instruction and ending with a STWCX/STDCX instruction. If such a sequence
is found, attempt to step through it. A breakpoint is placed at the end of
the sequence. */
int
ppc_deal_with_atomic_sequence (struct frame_info *frame)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
struct address_space *aspace = get_frame_address_space (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR pc = get_frame_pc (frame);
CORE_ADDR breaks[2] = {-1, -1};
CORE_ADDR loc = pc;
CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
int insn_count;
int index;
int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
const int atomic_sequence_length = 16; /* Instruction sequence length. */
int opcode; /* Branch instruction's OPcode. */
int bc_insn_count = 0; /* Conditional branch instruction count. */
/* Assume all atomic sequences start with a lwarx/ldarx instruction. */
if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
&& (insn & LWARX_MASK) != LDARX_INSTRUCTION)
return 0;
/* Assume that no atomic sequence is longer than "atomic_sequence_length"
instructions. */
for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
{
loc += PPC_INSN_SIZE;
insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
/* Assume that there is at most one conditional branch in the atomic
sequence. If a conditional branch is found, put a breakpoint in
its destination address. */
if ((insn & BRANCH_MASK) == BC_INSN)
{
int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
int absolute = insn & 2;
if (bc_insn_count >= 1)
return 0; /* More than one conditional branch found, fallback
to the standard single-step code. */
if (absolute)
breaks[1] = immediate;
else
breaks[1] = loc + immediate;
bc_insn_count++;
last_breakpoint++;
}
if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
|| (insn & STWCX_MASK) == STDCX_INSTRUCTION)
break;
}
/* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
&& (insn & STWCX_MASK) != STDCX_INSTRUCTION)
return 0;
closing_insn = loc;
loc += PPC_INSN_SIZE;
insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
/* Insert a breakpoint right after the end of the atomic sequence. */
breaks[0] = loc;
/* Check for duplicated breakpoints. Check also for a breakpoint
placed (branch instruction's destination) anywhere in sequence. */
if (last_breakpoint
&& (breaks[1] == breaks[0]
|| (breaks[1] >= pc && breaks[1] <= closing_insn)))
last_breakpoint = 0;
/* Effectively inserts the breakpoints. */
for (index = 0; index <= last_breakpoint; index++)
insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
return 1;
}
#define SIGNED_SHORT(x) \
((sizeof (short) == 2) \
? ((int)(short)(x)) \
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
/* Limit the number of skipped non-prologue instructions, as the examining
of the prologue is expensive. */
static int max_skip_non_prologue_insns = 10;
/* Return nonzero if the given instruction OP can be part of the prologue
of a function and saves a parameter on the stack. FRAMEP should be
set if one of the previous instructions in the function has set the
Frame Pointer. */
static int
store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
{
/* Move parameters from argument registers to temporary register. */
if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
{
/* Rx must be scratch register r0. */
const int rx_regno = (op >> 16) & 31;
/* Ry: Only r3 - r10 are used for parameter passing. */
const int ry_regno = GET_SRC_REG (op);
if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
{
*r0_contains_arg = 1;
return 1;
}
else
return 0;
}
/* Save a General Purpose Register on stack. */
if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
(op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
{
/* Rx: Only r3 - r10 are used for parameter passing. */
const int rx_regno = GET_SRC_REG (op);
return (rx_regno >= 3 && rx_regno <= 10);
}
/* Save a General Purpose Register on stack via the Frame Pointer. */
if (framep &&
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
(op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
(op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
{
/* Rx: Usually, only r3 - r10 are used for parameter passing.
However, the compiler sometimes uses r0 to hold an argument. */
const int rx_regno = GET_SRC_REG (op);
return ((rx_regno >= 3 && rx_regno <= 10)
|| (rx_regno == 0 && *r0_contains_arg));
}
if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
{
/* Only f2 - f8 are used for parameter passing. */
const int src_regno = GET_SRC_REG (op);
return (src_regno >= 2 && src_regno <= 8);
}
if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
{
/* Only f2 - f8 are used for parameter passing. */
const int src_regno = GET_SRC_REG (op);
return (src_regno >= 2 && src_regno <= 8);
}
/* Not an insn that saves a parameter on stack. */
return 0;
}
/* Assuming that INSN is a "bl" instruction located at PC, return
nonzero if the destination of the branch is a "blrl" instruction.
This sequence is sometimes found in certain function prologues.
It allows the function to load the LR register with a value that
they can use to access PIC data using PC-relative offsets. */
static int
bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
{
CORE_ADDR dest;
int immediate;
int absolute;
int dest_insn;
absolute = (int) ((insn >> 1) & 1);
immediate = ((insn & ~3) << 6) >> 6;
if (absolute)
dest = immediate;
else
dest = pc + immediate;
dest_insn = read_memory_integer (dest, 4, byte_order);
if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
return 1;
return 0;
}
/* Masks for decoding a branch-and-link (bl) instruction.
BL_MASK and BL_INSTRUCTION are used in combination with each other.
The former is anded with the opcode in question; if the result of
this masking operation is equal to BL_INSTRUCTION, then the opcode in
question is a ``bl'' instruction.
BL_DISPLACMENT_MASK is anded with the opcode in order to extract
the branch displacement. */
#define BL_MASK 0xfc000001
#define BL_INSTRUCTION 0x48000001
#define BL_DISPLACEMENT_MASK 0x03fffffc
static unsigned long
rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[4];
unsigned long op;
/* Fetch the instruction and convert it to an integer. */
if (target_read_memory (pc, buf, 4))
return 0;
op = extract_unsigned_integer (buf, 4, byte_order);
return op;
}
/* GCC generates several well-known sequences of instructions at the begining
of each function prologue when compiling with -fstack-check. If one of
such sequences starts at START_PC, then return the address of the
instruction immediately past this sequence. Otherwise, return START_PC. */
static CORE_ADDR
rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
{
CORE_ADDR pc = start_pc;
unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
/* First possible sequence: A small number of probes.
stw 0, -<some immediate>(1)
[repeat this instruction any (small) number of times]. */
if ((op & 0xffff0000) == 0x90010000)
{
while ((op & 0xffff0000) == 0x90010000)
{
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
}
return pc;
}
/* Second sequence: A probing loop.
addi 12,1,-<some immediate>
lis 0,-<some immediate>
[possibly ori 0,0,<some immediate>]
add 0,12,0
cmpw 0,12,0
beq 0,<disp>
addi 12,12,-<some immediate>
stw 0,0(12)
b <disp>
[possibly one last probe: stw 0,<some immediate>(12)]. */
while (1)
{
/* addi 12,1,-<some immediate> */
if ((op & 0xffff0000) != 0x39810000)
break;
/* lis 0,-<some immediate> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) != 0x3c000000)
break;
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
/* [possibly ori 0,0,<some immediate>] */
if ((op & 0xffff0000) == 0x60000000)
{
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
}
/* add 0,12,0 */
if (op != 0x7c0c0214)
break;
/* cmpw 0,12,0 */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if (op != 0x7c0c0000)
break;
/* beq 0,<disp> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xff9f0001) != 0x41820000)
break;
/* addi 12,12,-<some immediate> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) != 0x398c0000)
break;
/* stw 0,0(12) */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if (op != 0x900c0000)
break;
/* b <disp> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xfc000001) != 0x48000000)
break;
/* [possibly one last probe: stw 0,<some immediate>(12)]. */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) == 0x900c0000)
{
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
}
/* We found a valid stack-check sequence, return the new PC. */
return pc;
}
/* Third sequence: No probe; instead, a comparizon between the stack size
limit (saved in a run-time global variable) and the current stack
pointer:
addi 0,1,-<some immediate>
lis 12,__gnat_stack_limit@ha
lwz 12,__gnat_stack_limit@l(12)
twllt 0,12
or, with a small variant in the case of a bigger stack frame:
addis 0,1,<some immediate>
addic 0,0,-<some immediate>
lis 12,__gnat_stack_limit@ha
lwz 12,__gnat_stack_limit@l(12)
twllt 0,12
*/
while (1)
{
/* addi 0,1,-<some immediate> */
if ((op & 0xffff0000) != 0x38010000)
{
/* small stack frame variant not recognized; try the
big stack frame variant: */
/* addis 0,1,<some immediate> */
if ((op & 0xffff0000) != 0x3c010000)
break;
/* addic 0,0,-<some immediate> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) != 0x30000000)
break;
}
/* lis 12,<some immediate> */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) != 0x3d800000)
break;
/* lwz 12,<some immediate>(12) */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xffff0000) != 0x818c0000)
break;
/* twllt 0,12 */
pc = pc + 4;
op = rs6000_fetch_instruction (gdbarch, pc);
if ((op & 0xfffffffe) != 0x7c406008)
break;
/* We found a valid stack-check sequence, return the new PC. */
return pc;
}
/* No stack check code in our prologue, return the start_pc. */
return start_pc;
}
/* return pc value after skipping a function prologue and also return
information about a function frame.
in struct rs6000_framedata fdata:
- frameless is TRUE, if function does not have a frame.
- nosavedpc is TRUE, if function does not save %pc value in its frame.
- offset is the initial size of this stack frame --- the amount by
which we decrement the sp to allocate the frame.
- saved_gpr is the number of the first saved gpr.
- saved_fpr is the number of the first saved fpr.
- saved_vr is the number of the first saved vr.
- saved_ev is the number of the first saved ev.
- alloca_reg is the number of the register used for alloca() handling.
Otherwise -1.
- gpr_offset is the offset of the first saved gpr from the previous frame.
- fpr_offset is the offset of the first saved fpr from the previous frame.
- vr_offset is the offset of the first saved vr from the previous frame.
- ev_offset is the offset of the first saved ev from the previous frame.
- lr_offset is the offset of the saved lr
- cr_offset is the offset of the saved cr
- vrsave_offset is the offset of the saved vrsave register. */
static CORE_ADDR
skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
struct rs6000_framedata *fdata)
{
CORE_ADDR orig_pc = pc;
CORE_ADDR last_prologue_pc = pc;
CORE_ADDR li_found_pc = 0;
gdb_byte buf[4];
unsigned long op;
long offset = 0;
long vr_saved_offset = 0;
int lr_reg = -1;
int cr_reg = -1;
int vr_reg = -1;
int ev_reg = -1;
long ev_offset = 0;
int vrsave_reg = -1;
int reg;
int framep = 0;
int minimal_toc_loaded = 0;
int prev_insn_was_prologue_insn = 1;
int num_skip_non_prologue_insns = 0;
int r0_contains_arg = 0;
const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
memset (fdata, 0, sizeof (struct rs6000_framedata));
fdata->saved_gpr = -1;
fdata->saved_fpr = -1;
fdata->saved_vr = -1;
fdata->saved_ev = -1;
fdata->alloca_reg = -1;
fdata->frameless = 1;
fdata->nosavedpc = 1;
fdata->lr_register = -1;
pc = rs6000_skip_stack_check (gdbarch, pc);
if (pc >= lim_pc)
pc = lim_pc;
for (;; pc += 4)
{
/* Sometimes it isn't clear if an instruction is a prologue
instruction or not. When we encounter one of these ambiguous
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
Otherwise, we'll assume that it really is a prologue instruction. */
if (prev_insn_was_prologue_insn)
last_prologue_pc = pc;
/* Stop scanning if we've hit the limit. */
if (pc >= lim_pc)
break;
prev_insn_was_prologue_insn = 1;
/* Fetch the instruction and convert it to an integer. */
if (target_read_memory (pc, buf, 4))
break;
op = extract_unsigned_integer (buf, 4, byte_order);
if ((op & 0xfc1fffff) == 0x7c0802a6)
{ /* mflr Rx */
/* Since shared library / PIC code, which needs to get its
address at runtime, can appear to save more than one link
register vis:
*INDENT-OFF*
stwu r1,-304(r1)
mflr r3
bl 0xff570d0 (blrl)
stw r30,296(r1)
mflr r30
stw r31,300(r1)
stw r3,308(r1);
...
*INDENT-ON*
remember just the first one, but skip over additional
ones. */
if (lr_reg == -1)
lr_reg = (op & 0x03e00000) >> 21;
if (lr_reg == 0)
r0_contains_arg = 0;
continue;
}
else if ((op & 0xfc1fffff) == 0x7c000026)
{ /* mfcr Rx */
cr_reg = (op & 0x03e00000);
if (cr_reg == 0)
r0_contains_arg = 0;
continue;
}
else if ((op & 0xfc1f0000) == 0xd8010000)
{ /* stfd Rx,NUM(r1) */
reg = GET_SRC_REG (op);
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
{
fdata->saved_fpr = reg;
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
}
continue;
}
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
(((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
(op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
(op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
{
reg = GET_SRC_REG (op);
if ((op & 0xfc1f0000) == 0xbc010000)
fdata->gpr_mask |= ~((1U << reg) - 1);
else
fdata->gpr_mask |= 1U << reg;
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
{
fdata->saved_gpr = reg;
if ((op & 0xfc1f0003) == 0xf8010000)
op &= ~3UL;
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
}
continue;
}
else if ((op & 0xffff0000) == 0x3c4c0000
|| (op & 0xffff0000) == 0x3c400000
|| (op & 0xffff0000) == 0x38420000)
{
/* . 0: addis 2,12,.TOC.-0b@ha
. addi 2,2,.TOC.-0b@l
or
. lis 2,.TOC.@ha
. addi 2,2,.TOC.@l
used by ELFv2 global entry points to set up r2. */
continue;
}
else if (op == 0x60000000)
{
/* nop */
/* Allow nops in the prologue, but do not consider them to
be part of the prologue unless followed by other prologue
instructions. */
prev_insn_was_prologue_insn = 0;
continue;
}
else if ((op & 0xffff0000) == 0x3c000000)
{ /* addis 0,0,NUM, used for >= 32k frames */
fdata->offset = (op & 0x0000ffff) << 16;
fdata->frameless = 0;
r0_contains_arg = 0;
continue;
}
else if ((op & 0xffff0000) == 0x60000000)
{ /* ori 0,0,NUM, 2nd half of >= 32k frames */
fdata->offset |= (op & 0x0000ffff);
fdata->frameless = 0;
r0_contains_arg = 0;
continue;
}
else if (lr_reg >= 0 &&
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
(((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
/* stw Rx, NUM(r1) */
((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
/* stwu Rx, NUM(r1) */
((op & 0xffff0000) == (lr_reg | 0x94010000))))
{ /* where Rx == lr */
fdata->lr_offset = offset;
fdata->nosavedpc = 0;
/* Invalidate lr_reg, but don't set it to -1.
That would mean that it had never been set. */
lr_reg = -2;
if ((op & 0xfc000003) == 0xf8000000 || /* std */
(op & 0xfc000000) == 0x90000000) /* stw */
{
/* Does not update r1, so add displacement to lr_offset. */
fdata->lr_offset += SIGNED_SHORT (op);
}
continue;
}
else if (cr_reg >= 0 &&
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
(((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
/* stw Rx, NUM(r1) */
((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
/* stwu Rx, NUM(r1) */
((op & 0xffff0000) == (cr_reg | 0x94010000))))
{ /* where Rx == cr */
fdata->cr_offset = offset;
/* Invalidate cr_reg, but don't set it to -1.
That would mean that it had never been set. */
cr_reg = -2;
if ((op & 0xfc000003) == 0xf8000000 ||
(op & 0xfc000000) == 0x90000000)
{
/* Does not update r1, so add displacement to cr_offset. */
fdata->cr_offset += SIGNED_SHORT (op);
}
continue;
}
else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
{
/* bcl 20,xx,.+4 is used to get the current PC, with or without
prediction bits. If the LR has already been saved, we can
skip it. */
continue;
}
else if (op == 0x48000005)
{ /* bl .+4 used in
-mrelocatable */
fdata->used_bl = 1;
continue;
}
else if (op == 0x48000004)
{ /* b .+4 (xlc) */
break;
}
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
in V.4 -mminimal-toc */
(op & 0xffff0000) == 0x3bde0000)
{ /* addi 30,30,foo@l */
continue;
}
else if ((op & 0xfc000001) == 0x48000001)
{ /* bl foo,
to save fprs??? */
fdata->frameless = 0;
/* If the return address has already been saved, we can skip
calls to blrl (for PIC). */
if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
{
fdata->used_bl = 1;
continue;
}
/* Don't skip over the subroutine call if it is not within
the first three instructions of the prologue and either
we have no line table information or the line info tells
us that the subroutine call is not part of the line
associated with the prologue. */
if ((pc - orig_pc) > 8)
{
struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
struct symtab_and_line this_sal = find_pc_line (pc, 0);
if ((prologue_sal.line == 0)
|| (prologue_sal.line != this_sal.line))
break;
}
op = read_memory_integer (pc + 4, 4, byte_order);
/* At this point, make sure this is not a trampoline
function (a function that simply calls another functions,
and nothing else). If the next is not a nop, this branch
was part of the function prologue. */
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
break; /* Don't skip over
this branch. */
fdata->used_bl = 1;
continue;
}
/* update stack pointer */
else if ((op & 0xfc1f0000) == 0x94010000)
{ /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
fdata->frameless = 0;
fdata->offset = SIGNED_SHORT (op);
offset = fdata->offset;
continue;
}
else if ((op & 0xfc1f016a) == 0x7c01016e)
{ /* stwux rX,r1,rY */
/* No way to figure out what r1 is going to be. */
fdata->frameless = 0;
offset = fdata->offset;
continue;
}
else if ((op & 0xfc1f0003) == 0xf8010001)
{ /* stdu rX,NUM(r1) */
fdata->frameless = 0;
fdata->offset = SIGNED_SHORT (op & ~3UL);
offset = fdata->offset;
continue;
}
else if ((op & 0xfc1f016a) == 0x7c01016a)
{ /* stdux rX,r1,rY */
/* No way to figure out what r1 is going to be. */
fdata->frameless = 0;
offset = fdata->offset;
continue;
}
else if ((op & 0xffff0000) == 0x38210000)
{ /* addi r1,r1,SIMM */
fdata->frameless = 0;
fdata->offset += SIGNED_SHORT (op);
offset = fdata->offset;
continue;
}
/* Load up minimal toc pointer. Do not treat an epilogue restore
of r31 as a minimal TOC load. */
else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
(op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
&& !framep
&& !minimal_toc_loaded)
{
minimal_toc_loaded = 1;
continue;
/* move parameters from argument registers to local variable
registers */
}
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
(((op >> 21) & 31) <= 10) &&
((long) ((op >> 16) & 31)
>= fdata->saved_gpr)) /* Rx: local var reg */
{
continue;
/* store parameters in stack */
}
/* Move parameters from argument registers to temporary register. */
else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
{
continue;
/* Set up frame pointer */
}
else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
{
fdata->frameless = 0;
framep = 1;
fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
continue;
/* Another way to set up the frame pointer. */
}
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|| op == 0x7c3f0b78)
{ /* mr r31, r1 */
fdata->frameless = 0;
framep = 1;
fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
continue;
/* Another way to set up the frame pointer. */
}
else if ((op & 0xfc1fffff) == 0x38010000)
{ /* addi rX, r1, 0x0 */
fdata->frameless = 0;
framep = 1;
fdata->alloca_reg = (tdep->ppc_gp0_regnum
+ ((op & ~0x38010000) >> 21));
continue;
}
/* AltiVec related instructions. */
/* Store the vrsave register (spr 256) in another register for
later manipulation, or load a register into the vrsave
register. 2 instructions are used: mfvrsave and
mtvrsave. They are shorthand notation for mfspr Rn, SPR256
and mtspr SPR256, Rn. */
/* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
{
vrsave_reg = GET_SRC_REG (op);
continue;
}
else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
{
continue;
}
/* Store the register where vrsave was saved to onto the stack:
rS is the register where vrsave was stored in a previous
instruction. */
/* 100100 sssss 00001 dddddddd dddddddd */
else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
{
if (vrsave_reg == GET_SRC_REG (op))
{
fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
vrsave_reg = -1;
}
continue;
}
/* Compute the new value of vrsave, by modifying the register
where vrsave was saved to. */
else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
|| ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
{
continue;
}
/* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
in a pair of insns to save the vector registers on the
stack. */
/* 001110 00000 00000 iiii iiii iiii iiii */
/* 001110 01110 00000 iiii iiii iiii iiii */
else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
|| (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
{
if ((op & 0xffff0000) == 0x38000000)
r0_contains_arg = 0;
li_found_pc = pc;
vr_saved_offset = SIGNED_SHORT (op);
/* This insn by itself is not part of the prologue, unless
if part of the pair of insns mentioned above. So do not
record this insn as part of the prologue yet. */
prev_insn_was_prologue_insn = 0;
}
/* Store vector register S at (r31+r0) aligned to 16 bytes. */
/* 011111 sssss 11111 00000 00111001110 */
else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
{
if (pc == (li_found_pc + 4))
{
vr_reg = GET_SRC_REG (op);
/* If this is the first vector reg to be saved, or if
it has a lower number than others previously seen,
reupdate the frame info. */
if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
{
fdata->saved_vr = vr_reg;
fdata->vr_offset = vr_saved_offset + offset;
}
vr_saved_offset = -1;
vr_reg = -1;
li_found_pc = 0;
}
}
/* End AltiVec related instructions. */
/* Start BookE related instructions. */
/* Store gen register S at (r31+uimm).
Any register less than r13 is volatile, so we don't care. */
/* 000100 sssss 11111 iiiii 01100100001 */
else if (arch_info->mach == bfd_mach_ppc_e500
&& (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
{
if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
{
unsigned int imm;
ev_reg = GET_SRC_REG (op);
imm = (op >> 11) & 0x1f;
ev_offset = imm * 8;
/* If this is the first vector reg to be saved, or if
it has a lower number than others previously seen,
reupdate the frame info. */
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
{
fdata->saved_ev = ev_reg;
fdata->ev_offset = ev_offset + offset;
}
}
continue;
}
/* Store gen register rS at (r1+rB). */
/* 000100 sssss 00001 bbbbb 01100100000 */
else if (arch_info->mach == bfd_mach_ppc_e500
&& (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
{
if (pc == (li_found_pc + 4))
{
ev_reg = GET_SRC_REG (op);
/* If this is the first vector reg to be saved, or if
it has a lower number than others previously seen,
reupdate the frame info. */
/* We know the contents of rB from the previous instruction. */
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
{
fdata->saved_ev = ev_reg;
fdata->ev_offset = vr_saved_offset + offset;
}
vr_saved_offset = -1;
ev_reg = -1;
li_found_pc = 0;
}
continue;
}
/* Store gen register r31 at (rA+uimm). */
/* 000100 11111 aaaaa iiiii 01100100001 */
else if (arch_info->mach == bfd_mach_ppc_e500
&& (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
{
/* Wwe know that the source register is 31 already, but
it can't hurt to compute it. */
ev_reg = GET_SRC_REG (op);
ev_offset = ((op >> 11) & 0x1f) * 8;
/* If this is the first vector reg to be saved, or if
it has a lower number than others previously seen,
reupdate the frame info. */
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
{
fdata->saved_ev = ev_reg;
fdata->ev_offset = ev_offset + offset;
}
continue;
}
/* Store gen register S at (r31+r0).
Store param on stack when offset from SP bigger than 4 bytes. */
/* 000100 sssss 11111 00000 01100100000 */
else if (arch_info->mach == bfd_mach_ppc_e500
&& (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
{
if (pc == (li_found_pc + 4))
{
if ((op & 0x03e00000) >= 0x01a00000)
{
ev_reg = GET_SRC_REG (op);
/* If this is the first vector reg to be saved, or if
it has a lower number than others previously seen,
reupdate the frame info. */
/* We know the contents of r0 from the previous
instruction. */
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
{
fdata->saved_ev = ev_reg;
fdata->ev_offset = vr_saved_offset + offset;
}
ev_reg = -1;
}
vr_saved_offset = -1;
li_found_pc = 0;
continue;
}
}
/* End BookE related instructions. */
else
{
unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
/* Not a recognized prologue instruction.
Handle optimizer code motions into the prologue by continuing
the search if we have no valid frame yet or if the return
address is not yet saved in the frame. Also skip instructions
if some of the GPRs expected to be saved are not yet saved. */
if (fdata->frameless == 0 && fdata->nosavedpc == 0
&& (fdata->gpr_mask & all_mask) == all_mask)
break;
if (op == 0x4e800020 /* blr */
|| op == 0x4e800420) /* bctr */
/* Do not scan past epilogue in frameless functions or
trampolines. */
break;
if ((op & 0xf4000000) == 0x40000000) /* bxx */
/* Never skip branches. */
break;
if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
/* Do not scan too many insns, scanning insns is expensive with
remote targets. */
break;
/* Continue scanning. */
prev_insn_was_prologue_insn = 0;
continue;
}
}
#if 0
/* I have problems with skipping over __main() that I need to address
* sometime. Previously, I used to use misc_function_vector which
* didn't work as well as I wanted to be. -MGO */
/* If the first thing after skipping a prolog is a branch to a function,
this might be a call to an initializer in main(), introduced by gcc2.
We'd like to skip over it as well. Fortunately, xlc does some extra
work before calling a function right after a prologue, thus we can
single out such gcc2 behaviour. */
if ((op & 0xfc000001) == 0x48000001)
{ /* bl foo, an initializer function? */
op = read_memory_integer (pc + 4, 4, byte_order);
if (op == 0x4def7b82)
{ /* cror 0xf, 0xf, 0xf (nop) */
/* Check and see if we are in main. If so, skip over this
initializer function as well. */
tmp = find_pc_misc_function (pc);
if (tmp >= 0
&& strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
return pc + 8;
}
}
#endif /* 0 */
if (pc == lim_pc && lr_reg >= 0)
fdata->lr_register = lr_reg;
fdata->offset = -fdata->offset;
return last_prologue_pc;
}
static CORE_ADDR
rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct rs6000_framedata frame;
CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
/* See if we can determine the end of the prologue via the symbol table.
If so, then return either PC, or the PC after the prologue, whichever
is greater. */
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
{
CORE_ADDR post_prologue_pc
= skip_prologue_using_sal (gdbarch, func_addr);
if (post_prologue_pc != 0)
return max (pc, post_prologue_pc);
}
/* Can't determine prologue from the symbol table, need to examine
instructions. */
/* Find an upper limit on the function prologue using the debug
information. If the debug information could not be used to provide
that bound, then use an arbitrary large number as the upper bound. */
limit_pc = skip_prologue_using_sal (gdbarch, pc);
if (limit_pc == 0)
limit_pc = pc + 100; /* Magic. */
/* Do not allow limit_pc to be past the function end, if we know
where that end is... */
if (func_end_addr && limit_pc > func_end_addr)
limit_pc = func_end_addr;
pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
return pc;
}
/* When compiling for EABI, some versions of GCC emit a call to __eabi
in the prologue of main().
The function below examines the code pointed at by PC and checks to
see if it corresponds to a call to __eabi. If so, it returns the
address of the instruction following that call. Otherwise, it simply
returns PC. */
static CORE_ADDR
rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[4];
unsigned long op;
if (target_read_memory (pc, buf, 4))
return pc;
op = extract_unsigned_integer (buf, 4, byte_order);
if ((op & BL_MASK) == BL_INSTRUCTION)
{
CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
CORE_ADDR call_dest = pc + 4 + displ;
struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
/* We check for ___eabi (three leading underscores) in addition
to __eabi in case the GCC option "-fleading-underscore" was
used to compile the program. */
if (s.minsym != NULL
&& SYMBOL_LINKAGE_NAME (s.minsym) != NULL
&& (strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
|| strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
pc += 4;
}
return pc;
}
/* All the ABI's require 16 byte alignment. */
static CORE_ADDR
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
return (addr & -16);
}
/* Return whether handle_inferior_event() should proceed through code
starting at PC in function NAME when stepping.
The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
handle memory references that are too distant to fit in instructions
generated by the compiler. For example, if 'foo' in the following
instruction:
lwz r9,foo(r2)
is greater than 32767, the linker might replace the lwz with a branch to
somewhere in @FIX1 that does the load in 2 instructions and then branches
back to where execution should continue.
GDB should silently step over @FIX code, just like AIX dbx does.
Unfortunately, the linker uses the "b" instruction for the
branches, meaning that the link register doesn't get set.
Therefore, GDB's usual step_over_function () mechanism won't work.
Instead, use the gdbarch_skip_trampoline_code and
gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
@FIX code. */
static int
rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
CORE_ADDR pc, const char *name)
{
return name && !strncmp (name, "@FIX", 4);
}
/* Skip code that the user doesn't want to see when stepping:
1. Indirect function calls use a piece of trampoline code to do context
switching, i.e. to set the new TOC table. Skip such code if we are on
its first instruction (as when we have single-stepped to here).
2. Skip shared library trampoline code (which is different from
indirect function call trampolines).
3. Skip bigtoc fixup code.
Result is desired PC to step until, or NULL if we are not in
code that should be skipped. */
static CORE_ADDR
rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
unsigned int ii, op;
int rel;
CORE_ADDR solib_target_pc;
struct bound_minimal_symbol msymbol;
static unsigned trampoline_code[] =
{
0x800b0000, /* l r0,0x0(r11) */
0x90410014, /* st r2,0x14(r1) */
0x7c0903a6, /* mtctr r0 */
0x804b0004, /* l r2,0x4(r11) */
0x816b0008, /* l r11,0x8(r11) */
0x4e800420, /* bctr */
0x4e800020, /* br */
0
};
/* Check for bigtoc fixup code. */
msymbol = lookup_minimal_symbol_by_pc (pc);
if (msymbol.minsym
&& rs6000_in_solib_return_trampoline (gdbarch, pc,
SYMBOL_LINKAGE_NAME (msymbol.minsym)))
{
/* Double-check that the third instruction from PC is relative "b". */
op = read_memory_integer (pc + 8, 4, byte_order);
if ((op & 0xfc000003) == 0x48000000)
{
/* Extract bits 6-29 as a signed 24-bit relative word address and
add it to the containing PC. */
rel = ((int)(op << 6) >> 6);
return pc + 8 + rel;
}
}
/* If pc is in a shared library trampoline, return its target. */
solib_target_pc = find_solib_trampoline_target (frame, pc);
if (solib_target_pc)
return solib_target_pc;
for (ii = 0; trampoline_code[ii]; ++ii)
{
op = read_memory_integer (pc + (ii * 4), 4, byte_order);
if (op != trampoline_code[ii])
return 0;
}
ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
addr. */
pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
return pc;
}
/* ISA-specific vector types. */
static struct type *
rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (!tdep->ppc_builtin_type_vec64)
{
const struct builtin_type *bt = builtin_type (gdbarch);
/* The type we're building is this: */
#if 0
union __gdb_builtin_type_vec64
{
int64_t uint64;
float v2_float[2];
int32_t v2_int32[2];
int16_t v4_int16[4];
int8_t v8_int8[8];
};
#endif
struct type *t;
t = arch_composite_type (gdbarch,
"__ppc_builtin_type_vec64", TYPE_CODE_UNION);
append_composite_type_field (t, "uint64", bt->builtin_int64);
append_composite_type_field (t, "v2_float",
init_vector_type (bt->builtin_float, 2));
append_composite_type_field (t, "v2_int32",
init_vector_type (bt->builtin_int32, 2));
append_composite_type_field (t, "v4_int16",
init_vector_type (bt->builtin_int16, 4));
append_composite_type_field (t, "v8_int8",
init_vector_type (bt->builtin_int8, 8));
TYPE_VECTOR (t) = 1;
TYPE_NAME (t) = "ppc_builtin_type_vec64";
tdep->ppc_builtin_type_vec64 = t;
}
return tdep->ppc_builtin_type_vec64;
}
/* Vector 128 type. */
static struct type *
rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (!tdep->ppc_builtin_type_vec128)
{
const struct builtin_type *bt = builtin_type (gdbarch);
/* The type we're building is this
type = union __ppc_builtin_type_vec128 {
uint128_t uint128;
double v2_double[2];
float v4_float[4];
int32_t v4_int32[4];
int16_t v8_int16[8];
int8_t v16_int8[16];
}
*/
struct type *t;
t = arch_composite_type (gdbarch,
"__ppc_builtin_type_vec128", TYPE_CODE_UNION);
append_composite_type_field (t, "uint128", bt->builtin_uint128);
append_composite_type_field (t, "v2_double",
init_vector_type (bt->builtin_double, 2));
append_composite_type_field (t, "v4_float",
init_vector_type (bt->builtin_float, 4));
append_composite_type_field (t, "v4_int32",
init_vector_type (bt->builtin_int32, 4));
append_composite_type_field (t, "v8_int16",
init_vector_type (bt->builtin_int16, 8));
append_composite_type_field (t, "v16_int8",
init_vector_type (bt->builtin_int8, 16));
TYPE_VECTOR (t) = 1;
TYPE_NAME (t) = "ppc_builtin_type_vec128";
tdep->ppc_builtin_type_vec128 = t;
}
return tdep->ppc_builtin_type_vec128;
}
/* Return the name of register number REGNO, or the empty string if it
is an anonymous register. */
static const char *
rs6000_register_name (struct gdbarch *gdbarch, int regno)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* The upper half "registers" have names in the XML description,
but we present only the low GPRs and the full 64-bit registers
to the user. */
if (tdep->ppc_ev0_upper_regnum >= 0
&& tdep->ppc_ev0_upper_regnum <= regno
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
return "";
/* Hide the upper halves of the vs0~vs31 registers. */
if (tdep->ppc_vsr0_regnum >= 0
&& tdep->ppc_vsr0_upper_regnum <= regno
&& regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
return "";
/* Check if the SPE pseudo registers are available. */
if (IS_SPE_PSEUDOREG (tdep, regno))
{
static const char *const spe_regnames[] = {
"ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
"ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
"ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
"ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
};
return spe_regnames[regno - tdep->ppc_ev0_regnum];
}
/* Check if the decimal128 pseudo-registers are available. */
if (IS_DFP_PSEUDOREG (tdep, regno))
{
static const char *const dfp128_regnames[] = {
"dl0", "dl1", "dl2", "dl3",
"dl4", "dl5", "dl6", "dl7",
"dl8", "dl9", "dl10", "dl11",
"dl12", "dl13", "dl14", "dl15"
};
return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
}
/* Check if this is a VSX pseudo-register. */
if (IS_VSX_PSEUDOREG (tdep, regno))
{
static const char *const vsx_regnames[] = {
"vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
"vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
"vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
"vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
"vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
"vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
"vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
"vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
"vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
};
return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
}
/* Check if the this is a Extended FP pseudo-register. */
if (IS_EFP_PSEUDOREG (tdep, regno))
{
static const char *const efpr_regnames[] = {
"f32", "f33", "f34", "f35", "f36", "f37", "f38",
"f39", "f40", "f41", "f42", "f43", "f44", "f45",
"f46", "f47", "f48", "f49", "f50", "f51",
"f52", "f53", "f54", "f55", "f56", "f57",
"f58", "f59", "f60", "f61", "f62", "f63"
};
return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
}
return tdesc_register_name (gdbarch, regno);
}
/* Return the GDB type object for the "standard" data type of data in
register N. */
static struct type *
rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* These are the only pseudo-registers we support. */
gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
|| IS_DFP_PSEUDOREG (tdep, regnum)
|| IS_VSX_PSEUDOREG (tdep, regnum)
|| IS_EFP_PSEUDOREG (tdep, regnum));
/* These are the e500 pseudo-registers. */
if (IS_SPE_PSEUDOREG (tdep, regnum))
return rs6000_builtin_type_vec64 (gdbarch);
else if (IS_DFP_PSEUDOREG (tdep, regnum))
/* PPC decimal128 pseudo-registers. */
return builtin_type (gdbarch)->builtin_declong;
else if (IS_VSX_PSEUDOREG (tdep, regnum))
/* POWER7 VSX pseudo-registers. */
return rs6000_builtin_type_vec128 (gdbarch);
else
/* POWER7 Extended FP pseudo-registers. */
return builtin_type (gdbarch)->builtin_double;
}
/* Is REGNUM a member of REGGROUP? */
static int
rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
struct reggroup *group)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* These are the only pseudo-registers we support. */
gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
|| IS_DFP_PSEUDOREG (tdep, regnum)
|| IS_VSX_PSEUDOREG (tdep, regnum)
|| IS_EFP_PSEUDOREG (tdep, regnum));
/* These are the e500 pseudo-registers or the POWER7 VSX registers. */
if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
return group == all_reggroup || group == vector_reggroup;
else
/* PPC decimal128 or Extended FP pseudo-registers. */
return group == all_reggroup || group == float_reggroup;
}
/* The register format for RS/6000 floating point registers is always
double, we need a conversion if the memory format is float. */
static int
rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
struct type *type)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
return (tdep->ppc_fp0_regnum >= 0
&& regnum >= tdep->ppc_fp0_regnum
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
&& TYPE_CODE (type) == TYPE_CODE_FLT
&& TYPE_LENGTH (type)
!= TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
}
static int
rs6000_register_to_value (struct frame_info *frame,
int regnum,
struct type *type,
gdb_byte *to,
int *optimizedp, int *unavailablep)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
gdb_byte from[MAX_REGISTER_SIZE];
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
if (!get_frame_register_bytes (frame, regnum, 0,
register_size (gdbarch, regnum),
from, optimizedp, unavailablep))
return 0;
convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
to, type);
*optimizedp = *unavailablep = 0;
return 1;
}
static void
rs6000_value_to_register (struct frame_info *frame,
int regnum,
struct type *type,
const gdb_byte *from)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
gdb_byte to[MAX_REGISTER_SIZE];
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
convert_typed_floating (from, type,
to, builtin_type (gdbarch)->builtin_double);
put_frame_register (frame, regnum, to);
}
/* The type of a function that moves the value of REG between CACHE
or BUF --- in either direction. */
typedef enum register_status (*move_ev_register_func) (struct regcache *,
int, void *);
/* Move SPE vector register values between a 64-bit buffer and the two
32-bit raw register halves in a regcache. This function handles
both splitting a 64-bit value into two 32-bit halves, and joining
two halves into a whole 64-bit value, depending on the function
passed as the MOVE argument.
EV_REG must be the number of an SPE evN vector register --- a
pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
64-bit buffer.
Call MOVE once for each 32-bit half of that register, passing
REGCACHE, the number of the raw register corresponding to that
half, and the address of the appropriate half of BUFFER.
For example, passing 'regcache_raw_read' as the MOVE function will
fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
'regcache_raw_supply' will supply the contents of BUFFER to the
appropriate pair of raw registers in REGCACHE.
You may need to cast away some 'const' qualifiers when passing
MOVE, since this function can't tell at compile-time which of
REGCACHE or BUFFER is acting as the source of the data. If C had
co-variant type qualifiers, ... */
static enum register_status
e500_move_ev_register (move_ev_register_func move,
struct regcache *regcache, int ev_reg, void *buffer)
{
struct gdbarch *arch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
int reg_index;
gdb_byte *byte_buffer = buffer;
enum register_status status;
gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
reg_index = ev_reg - tdep->ppc_ev0_regnum;
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
{
status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
byte_buffer);
if (status == REG_VALID)
status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
byte_buffer + 4);
}
else
{
status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
if (status == REG_VALID)
status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
byte_buffer + 4);
}
return status;
}
static enum register_status
do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
{
return regcache_raw_read (regcache, regnum, buffer);
}
static enum register_status
do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
{
regcache_raw_write (regcache, regnum, buffer);
return REG_VALID;
}
static enum register_status
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, gdb_byte *buffer)
{
return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
}
static void
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
e500_move_ev_register (do_regcache_raw_write, regcache,
reg_nr, (void *) buffer);
}
/* Read method for DFP pseudo-registers. */
static enum register_status
dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, gdb_byte *buffer)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int reg_index = reg_nr - tdep->ppc_dl0_regnum;
enum register_status status;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
/* Read two FP registers to form a whole dl register. */
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2 * reg_index, buffer);
if (status == REG_VALID)
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2 * reg_index + 1, buffer + 8);
}
else
{
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2 * reg_index + 1, buffer + 8);
if (status == REG_VALID)
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2 * reg_index, buffer);
}
return status;
}
/* Write method for DFP pseudo-registers. */
static void
dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int reg_index = reg_nr - tdep->ppc_dl0_regnum;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
/* Write each half of the dl register into a separate
FP register. */
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2 * reg_index, buffer);
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2 * reg_index + 1, buffer + 8);
}
else
{
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2 * reg_index + 1, buffer + 8);
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2 * reg_index, buffer);
}
}
/* Read method for POWER7 VSX pseudo-registers. */
static enum register_status
vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, gdb_byte *buffer)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
enum register_status status;
/* Read the portion that overlaps the VMX registers. */
if (reg_index > 31)
status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
reg_index - 32, buffer);
else
/* Read the portion that overlaps the FPR registers. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
reg_index, buffer);
if (status == REG_VALID)
status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
reg_index, buffer + 8);
}
else
{
status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
reg_index, buffer + 8);
if (status == REG_VALID)
status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
reg_index, buffer);
}
return status;
}
/* Write method for POWER7 VSX pseudo-registers. */
static void
vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
/* Write the portion that overlaps the VMX registers. */
if (reg_index > 31)
regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
reg_index - 32, buffer);
else
/* Write the portion that overlaps the FPR registers. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
reg_index, buffer);
regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
reg_index, buffer + 8);
}
else
{
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
reg_index, buffer + 8);
regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
reg_index, buffer);
}
}
/* Read method for POWER7 Extended FP pseudo-registers. */
static enum register_status
efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, gdb_byte *buffer)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
/* Read the portion that overlaps the VMX register. */
return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index, 0,
register_size (gdbarch, reg_nr), buffer);
}
/* Write method for POWER7 Extended FP pseudo-registers. */
static void
efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
/* Write the portion that overlaps the VMX register. */
regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index, 0,
register_size (gdbarch, reg_nr), buffer);
}
static enum register_status
rs6000_pseudo_register_read (struct gdbarch *gdbarch,
struct regcache *regcache,
int reg_nr, gdb_byte *buffer)
{
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
gdb_assert (regcache_arch == gdbarch);
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
else
internal_error (__FILE__, __LINE__,
_("rs6000_pseudo_register_read: "
"called on unexpected register '%s' (%d)"),
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
}
static void
rs6000_pseudo_register_write (struct gdbarch *gdbarch,
struct regcache *regcache,
int reg_nr, const gdb_byte *buffer)
{
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
gdb_assert (regcache_arch == gdbarch);
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
else
internal_error (__FILE__, __LINE__,
_("rs6000_pseudo_register_write: "
"called on unexpected register '%s' (%d)"),
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
}
/* Convert a DBX STABS register number to a GDB register number. */
static int
rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (0 <= num && num <= 31)
return tdep->ppc_gp0_regnum + num;
else if (32 <= num && num <= 63)
/* FIXME: jimb/2004-05-05: What should we do when the debug info
specifies registers the architecture doesn't have? Our
callers don't check the value we return. */
return tdep->ppc_fp0_regnum + (num - 32);
else if (77 <= num && num <= 108)
return tdep->ppc_vr0_regnum + (num - 77);
else if (1200 <= num && num < 1200 + 32)
return tdep->ppc_ev0_upper_regnum + (num - 1200);
else
switch (num)
{
case 64:
return tdep->ppc_mq_regnum;
case 65:
return tdep->ppc_lr_regnum;
case 66:
return tdep->ppc_ctr_regnum;
case 76:
return tdep->ppc_xer_regnum;
case 109:
return tdep->ppc_vrsave_regnum;
case 110:
return tdep->ppc_vrsave_regnum - 1; /* vscr */
case 111:
return tdep->ppc_acc_regnum;
case 112:
return tdep->ppc_spefscr_regnum;
default:
return num;
}
}
/* Convert a Dwarf 2 register number to a GDB register number. */
static int
rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (0 <= num && num <= 31)
return tdep->ppc_gp0_regnum + num;
else if (32 <= num && num <= 63)
/* FIXME: jimb/2004-05-05: What should we do when the debug info
specifies registers the architecture doesn't have? Our
callers don't check the value we return. */
return tdep->ppc_fp0_regnum + (num - 32);
else if (1124 <= num && num < 1124 + 32)
return tdep->ppc_vr0_regnum + (num - 1124);
else if (1200 <= num && num < 1200 + 32)
return tdep->ppc_ev0_upper_regnum + (num - 1200);
else
switch (num)
{
case 64:
return tdep->ppc_cr_regnum;
case 67:
return tdep->ppc_vrsave_regnum - 1; /* vscr */
case 99:
return tdep->ppc_acc_regnum;
case 100:
return tdep->ppc_mq_regnum;
case 101:
return tdep->ppc_xer_regnum;
case 108:
return tdep->ppc_lr_regnum;
case 109:
return tdep->ppc_ctr_regnum;
case 356:
return tdep->ppc_vrsave_regnum;
case 612:
return tdep->ppc_spefscr_regnum;
default:
return num;
}
}
/* Translate a .eh_frame register to DWARF register, or adjust a
.debug_frame register. */
static int
rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
{
/* GCC releases before 3.4 use GCC internal register numbering in
.debug_frame (and .debug_info, et cetera). The numbering is
different from the standard SysV numbering for everything except
for GPRs and FPRs. We can not detect this problem in most cases
- to get accurate debug info for variables living in lr, ctr, v0,
et cetera, use a newer version of GCC. But we must detect
one important case - lr is in column 65 in .debug_frame output,
instead of 108.
GCC 3.4, and the "hammer" branch, have a related problem. They
record lr register saves in .debug_frame as 108, but still record
the return column as 65. We fix that up too.
We can do this because 65 is assigned to fpsr, and GCC never
generates debug info referring to it. To add support for
handwritten debug info that restores fpsr, we would need to add a
producer version check to this. */
if (!eh_frame_p)
{
if (num == 65)
return 108;
else
return num;
}
/* .eh_frame is GCC specific. For binary compatibility, it uses GCC
internal register numbering; translate that to the standard DWARF2
register numbering. */
if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
return num;
else if (68 <= num && num <= 75) /* cr0-cr8 */
return num - 68 + 86;
else if (77 <= num && num <= 108) /* vr0-vr31 */
return num - 77 + 1124;
else
switch (num)
{
case 64: /* mq */
return 100;
case 65: /* lr */
return 108;
case 66: /* ctr */
return 109;
case 76: /* xer */
return 101;
case 109: /* vrsave */
return 356;
case 110: /* vscr */
return 67;
case 111: /* spe_acc */
return 99;
case 112: /* spefscr */
return 612;
default:
return num;
}
}
/* Handling the various POWER/PowerPC variants. */
/* Information about a particular processor variant. */
struct variant
{
/* Name of this variant. */
char *name;
/* English description of the variant. */
char *description;
/* bfd_arch_info.arch corresponding to variant. */
enum bfd_architecture arch;
/* bfd_arch_info.mach corresponding to variant. */
unsigned long mach;
/* Target description for this variant. */
struct target_desc **tdesc;
};
static struct variant variants[] =
{
{"powerpc", "PowerPC user-level", bfd_arch_powerpc,
bfd_mach_ppc, &tdesc_powerpc_altivec32},
{"power", "POWER user-level", bfd_arch_rs6000,
bfd_mach_rs6k, &tdesc_rs6000},
{"403", "IBM PowerPC 403", bfd_arch_powerpc,
bfd_mach_ppc_403, &tdesc_powerpc_403},
{"405", "IBM PowerPC 405", bfd_arch_powerpc,
bfd_mach_ppc_405, &tdesc_powerpc_405},
{"601", "Motorola PowerPC 601", bfd_arch_powerpc,
bfd_mach_ppc_601, &tdesc_powerpc_601},
{"602", "Motorola PowerPC 602", bfd_arch_powerpc,
bfd_mach_ppc_602, &tdesc_powerpc_602},
{"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
bfd_mach_ppc_603, &tdesc_powerpc_603},
{"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
604, &tdesc_powerpc_604},
{"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
{"505", "Motorola PowerPC 505", bfd_arch_powerpc,
bfd_mach_ppc_505, &tdesc_powerpc_505},
{"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
bfd_mach_ppc_860, &tdesc_powerpc_860},
{"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
bfd_mach_ppc_750, &tdesc_powerpc_750},
{"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
bfd_mach_ppc_7400, &tdesc_powerpc_7400},
{"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
bfd_mach_ppc_e500, &tdesc_powerpc_e500},
/* 64-bit */
{"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
bfd_mach_ppc64, &tdesc_powerpc_altivec64},
{"620", "Motorola PowerPC 620", bfd_arch_powerpc,
bfd_mach_ppc_620, &tdesc_powerpc_64},
{"630", "Motorola PowerPC 630", bfd_arch_powerpc,
bfd_mach_ppc_630, &tdesc_powerpc_64},
{"a35", "PowerPC A35", bfd_arch_powerpc,
bfd_mach_ppc_a35, &tdesc_powerpc_64},
{"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
{"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
/* FIXME: I haven't checked the register sets of the following. */
{"rs1", "IBM POWER RS1", bfd_arch_rs6000,
bfd_mach_rs6k_rs1, &tdesc_rs6000},
{"rsc", "IBM POWER RSC", bfd_arch_rs6000,
bfd_mach_rs6k_rsc, &tdesc_rs6000},
{"rs2", "IBM POWER RS2", bfd_arch_rs6000,
bfd_mach_rs6k_rs2, &tdesc_rs6000},
{0, 0, 0, 0, 0}
};
/* Return the variant corresponding to architecture ARCH and machine number
MACH. If no such variant exists, return null. */
static const struct variant *
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
{
const struct variant *v;
for (v = variants; v->name; v++)
if (arch == v->arch && mach == v->mach)
return v;
return NULL;
}
static int
gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
{
if (info->endian == BFD_ENDIAN_BIG)
return print_insn_big_powerpc (memaddr, info);
else
return print_insn_little_powerpc (memaddr, info);
}
static CORE_ADDR
rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame,
gdbarch_pc_regnum (gdbarch));
}
static struct frame_id
rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
return frame_id_build (get_frame_register_unsigned
(this_frame, gdbarch_sp_regnum (gdbarch)),
get_frame_pc (this_frame));
}
struct rs6000_frame_cache
{
CORE_ADDR base;
CORE_ADDR initial_sp;
struct trad_frame_saved_reg *saved_regs;
};
static struct rs6000_frame_cache *
rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct rs6000_frame_cache *cache;
struct gdbarch *gdbarch = get_frame_arch (this_frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct rs6000_framedata fdata;
int wordsize = tdep->wordsize;
CORE_ADDR func, pc;
if ((*this_cache) != NULL)
return (*this_cache);
cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
(*this_cache) = cache;
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
func = get_frame_func (this_frame);
pc = get_frame_pc (this_frame);
skip_prologue (gdbarch, func, pc, &fdata);
/* Figure out the parent's stack pointer. */
/* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
address of the current frame. Things might be easier if the
->frame pointed to the outer-most address of the frame. In
the mean time, the address of the prev frame is used as the
base address of this frame. */
cache->base = get_frame_register_unsigned
(this_frame, gdbarch_sp_regnum (gdbarch));
/* If the function appears to be frameless, check a couple of likely
indicators that we have simply failed to find the frame setup.
Two common cases of this are missing symbols (i.e.
get_frame_func returns the wrong address or 0), and assembly
stubs which have a fast exit path but set up a frame on the slow
path.
If the LR appears to return to this function, then presume that
we have an ABI compliant frame that we failed to find. */
if (fdata.frameless && fdata.lr_offset == 0)
{
CORE_ADDR saved_lr;
int make_frame = 0;
saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
if (func == 0 && saved_lr == pc)
make_frame = 1;
else if (func != 0)
{
CORE_ADDR saved_func = get_pc_function_start (saved_lr);
if (func == saved_func)
make_frame = 1;
}
if (make_frame)
{
fdata.frameless = 0;
fdata.lr_offset = tdep->lr_frame_offset;
}
}
if (!fdata.frameless)
/* Frameless really means stackless. */
cache->base
= read_memory_unsigned_integer (cache->base, wordsize, byte_order);
trad_frame_set_value (cache->saved_regs,
gdbarch_sp_regnum (gdbarch), cache->base);
/* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
All fpr's from saved_fpr to fp31 are saved. */
if (fdata.saved_fpr >= 0)
{
int i;
CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
/* If skip_prologue says floating-point registers were saved,
but the current architecture has no floating-point registers,
then that's strange. But we have no indices to even record
the addresses under, so we just ignore it. */
if (ppc_floating_point_unit_p (gdbarch))
for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
{
cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
fpr_addr += 8;
}
}
/* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
All gpr's from saved_gpr to gpr31 are saved (except during the
prologue). */
if (fdata.saved_gpr >= 0)
{
int i;
CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
{
if (fdata.gpr_mask & (1U << i))
cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
gpr_addr += wordsize;
}
}
/* if != -1, fdata.saved_vr is the smallest number of saved_vr.
All vr's from saved_vr to vr31 are saved. */
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
{
if (fdata.saved_vr >= 0)
{
int i;
CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
for (i = fdata.saved_vr; i < 32; i++)
{
cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
}
}
}
/* if != -1, fdata.saved_ev is the smallest number of saved_ev.
All vr's from saved_ev to ev31 are saved. ????? */
if (tdep->ppc_ev0_regnum != -1)
{
if (fdata.saved_ev >= 0)
{
int i;
CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
{
cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
}
}
}
/* If != 0, fdata.cr_offset is the offset from the frame that
holds the CR. */
if (fdata.cr_offset != 0)
cache->saved_regs[tdep->ppc_cr_regnum].addr
= cache->base + fdata.cr_offset;
/* If != 0, fdata.lr_offset is the offset from the frame that
holds the LR. */
if (fdata.lr_offset != 0)
cache->saved_regs[tdep->ppc_lr_regnum].addr
= cache->base + fdata.lr_offset;
else if (fdata.lr_register != -1)
cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
/* The PC is found in the link register. */
cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
cache->saved_regs[tdep->ppc_lr_regnum];
/* If != 0, fdata.vrsave_offset is the offset from the frame that
holds the VRSAVE. */
if (fdata.vrsave_offset != 0)
cache->saved_regs[tdep->ppc_vrsave_regnum].addr
= cache->base + fdata.vrsave_offset;
if (fdata.alloca_reg < 0)
/* If no alloca register used, then fi->frame is the value of the
%sp for this frame, and it is good enough. */
cache->initial_sp
= get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
else
cache->initial_sp
= get_frame_register_unsigned (this_frame, fdata.alloca_reg);
return cache;
}
static void
rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
struct frame_id *this_id)
{
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
this_cache);
/* This marks the outermost frame. */
if (info->base == 0)
return;
(*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}
static struct value *
rs6000_frame_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
this_cache);
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
static const struct frame_unwind rs6000_frame_unwind =
{
NORMAL_FRAME,
default_frame_unwind_stop_reason,
rs6000_frame_this_id,
rs6000_frame_prev_register,
NULL,
default_frame_sniffer
};
static CORE_ADDR
rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
this_cache);
return info->initial_sp;
}
static const struct frame_base rs6000_frame_base = {
&rs6000_frame_unwind,
rs6000_frame_base_address,
rs6000_frame_base_address,
rs6000_frame_base_address
};
static const struct frame_base *
rs6000_frame_base_sniffer (struct frame_info *this_frame)
{
return &rs6000_frame_base;
}
/* DWARF-2 frame support. Used to handle the detection of
clobbered registers during function calls. */
static void
ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
struct dwarf2_frame_state_reg *reg,
struct frame_info *this_frame)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* PPC32 and PPC64 ABI's are the same regarding volatile and
non-volatile registers. We will use the same code for both. */
/* Call-saved GP registers. */
if ((regnum >= tdep->ppc_gp0_regnum + 14
&& regnum <= tdep->ppc_gp0_regnum + 31)
|| (regnum == tdep->ppc_gp0_regnum + 1))
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
/* Call-clobbered GP registers. */
if ((regnum >= tdep->ppc_gp0_regnum + 3
&& regnum <= tdep->ppc_gp0_regnum + 12)
|| (regnum == tdep->ppc_gp0_regnum))
reg->how = DWARF2_FRAME_REG_UNDEFINED;
/* Deal with FP registers, if supported. */
if (tdep->ppc_fp0_regnum >= 0)
{
/* Call-saved FP registers. */
if ((regnum >= tdep->ppc_fp0_regnum + 14
&& regnum <= tdep->ppc_fp0_regnum + 31))
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
/* Call-clobbered FP registers. */
if ((regnum >= tdep->ppc_fp0_regnum
&& regnum <= tdep->ppc_fp0_regnum + 13))
reg->how = DWARF2_FRAME_REG_UNDEFINED;
}
/* Deal with ALTIVEC registers, if supported. */
if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
{
/* Call-saved Altivec registers. */
if ((regnum >= tdep->ppc_vr0_regnum + 20
&& regnum <= tdep->ppc_vr0_regnum + 31)
|| regnum == tdep->ppc_vrsave_regnum)
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
/* Call-clobbered Altivec registers. */
if ((regnum >= tdep->ppc_vr0_regnum
&& regnum <= tdep->ppc_vr0_regnum + 19))
reg->how = DWARF2_FRAME_REG_UNDEFINED;
}
/* Handle PC register and Stack Pointer correctly. */
if (regnum == gdbarch_pc_regnum (gdbarch))
reg->how = DWARF2_FRAME_REG_RA;
else if (regnum == gdbarch_sp_regnum (gdbarch))
reg->how = DWARF2_FRAME_REG_CFA;
}
/* Return true if a .gnu_attributes section exists in BFD and it
indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
section exists in BFD and it indicates that SPE extensions are in
use. Check the .gnu.attributes section first, as the binary might be
compiled for SPE, but not actually using SPE instructions. */
static int
bfd_uses_spe_extensions (bfd *abfd)
{
asection *sect;
gdb_byte *contents = NULL;
bfd_size_type size;
gdb_byte *ptr;
int success = 0;
int vector_abi;
if (!abfd)
return 0;
#ifdef HAVE_ELF
/* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
could be using the SPE vector abi without actually using any spe
bits whatsoever. But it's close enough for now. */
vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
Tag_GNU_Power_ABI_Vector);
if (vector_abi == 3)
return 1;
#endif
sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
if (!sect)
return 0;
size = bfd_get_section_size (sect);
contents = xmalloc (size);
if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
{
xfree (contents);
return 0;
}
/* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
struct {
uint32 name_len;
uint32 data_len;
uint32 type;
char name[name_len rounded up to 4-byte alignment];
char data[data_len];
};
Technically, there's only supposed to be one such structure in a
given apuinfo section, but the linker is not always vigilant about
merging apuinfo sections from input files. Just go ahead and parse
them all, exiting early when we discover the binary uses SPE
insns.
It's not specified in what endianness the information in this
section is stored. Assume that it's the endianness of the BFD. */
ptr = contents;
while (1)
{
unsigned int name_len;
unsigned int data_len;
unsigned int type;
/* If we can't read the first three fields, we're done. */
if (size < 12)
break;
name_len = bfd_get_32 (abfd, ptr);
name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
data_len = bfd_get_32 (abfd, ptr + 4);
type = bfd_get_32 (abfd, ptr + 8);
ptr += 12;
/* The name must be "APUinfo\0". */
if (name_len != 8
&& strcmp ((const char *) ptr, "APUinfo") != 0)
break;
ptr += name_len;
/* The type must be 2. */
if (type != 2)
break;
/* The data is stored as a series of uint32. The upper half of
each uint32 indicates the particular APU used and the lower
half indicates the revision of that APU. We just care about
the upper half. */
/* Not 4-byte quantities. */
if (data_len & 3U)
break;
while (data_len)
{
unsigned int apuinfo = bfd_get_32 (abfd, ptr);
unsigned int apu = apuinfo >> 16;
ptr += 4;
data_len -= 4;
/* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
either. */
if (apu == 0x100 || apu == 0x101)
{
success = 1;
data_len = 0;
}
}
if (success)
break;
}
xfree (contents);
return success;
}
/* Initialize the current architecture based on INFO. If possible, re-use an
architecture from ARCHES, which is a list of architectures already created
during this debugging session.
Called e.g. at program startup, when reading a core file, and when reading
a binary file. */
static struct gdbarch *
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
int wordsize, from_xcoff_exec, from_elf_exec;
enum bfd_architecture arch;
unsigned long mach;
bfd abfd;
enum auto_boolean soft_float_flag = powerpc_soft_float_global;
int soft_float;
enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
have_vsx = 0;
int tdesc_wordsize = -1;
const struct target_desc *tdesc = info.target_desc;
struct tdesc_arch_data *tdesc_data = NULL;
int num_pseudoregs = 0;
int cur_reg;
/* INFO may refer to a binary that is not of the PowerPC architecture,
e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
In this case, we must not attempt to infer properties of the (PowerPC
side) of the target system from properties of that executable. Trust
the target description instead. */
if (info.abfd
&& bfd_get_arch (info.abfd) != bfd_arch_powerpc
&& bfd_get_arch (info.abfd) != bfd_arch_rs6000)
info.abfd = NULL;
from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
/* Check word size. If INFO is from a binary file, infer it from
that, else choose a likely default. */
if (from_xcoff_exec)
{
if (bfd_xcoff_is_xcoff64 (info.abfd))
wordsize = 8;
else
wordsize = 4;
}
else if (from_elf_exec)
{
if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
wordsize = 8;
else
wordsize = 4;
}
else if (tdesc_has_registers (tdesc))
wordsize = -1;
else
{
if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
wordsize = info.bfd_arch_info->bits_per_word /
info.bfd_arch_info->bits_per_byte;
else
wordsize = 4;
}
/* Get the architecture and machine from the BFD. */
arch = info.bfd_arch_info->arch;
mach = info.bfd_arch_info->mach;
/* For e500 executables, the apuinfo section is of help here. Such
section contains the identifier and revision number of each
Application-specific Processing Unit that is present on the
chip. The content of the section is determined by the assembler
which looks at each instruction and determines which unit (and
which version of it) can execute it. Grovel through the section
looking for relevant e500 APUs. */
if (bfd_uses_spe_extensions (info.abfd))
{
arch = info.bfd_arch_info->arch;
mach = bfd_mach_ppc_e500;
bfd_default_set_arch_mach (&abfd, arch, mach);
info.bfd_arch_info = bfd_get_arch_info (&abfd);
}
/* Find a default target description which describes our register
layout, if we do not already have one. */
if (! tdesc_has_registers (tdesc))
{
const struct variant *v;
/* Choose variant. */
v = find_variant_by_arch (arch, mach);
if (!v)
return NULL;
tdesc = *v->tdesc;
}
gdb_assert (tdesc_has_registers (tdesc));
/* Check any target description for validity. */
if (tdesc_has_registers (tdesc))
{
static const char *const gprs[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
};
static const char *const segment_regs[] = {
"sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
};
const struct tdesc_feature *feature;
int i, valid_p;
static const char *const msr_names[] = { "msr", "ps" };
static const char *const cr_names[] = { "cr", "cnd" };
static const char *const ctr_names[] = { "ctr", "cnt" };
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.core");
if (feature == NULL)
return NULL;
tdesc_data = tdesc_data_alloc ();
valid_p = 1;
for (i = 0; i < ppc_num_gprs; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
"pc");
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
"lr");
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
"xer");
/* Allow alternate names for these registers, to accomodate GDB's
historic naming. */
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
PPC_MSR_REGNUM, msr_names);
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
PPC_CR_REGNUM, cr_names);
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
PPC_CTR_REGNUM, ctr_names);
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
"mq");
tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
if (wordsize == -1)
wordsize = tdesc_wordsize;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.fpu");
if (feature != NULL)
{
static const char *const fprs[] = {
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
};
valid_p = 1;
for (i = 0; i < ppc_num_fprs; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data,
PPC_F0_REGNUM + i, fprs[i]);
valid_p &= tdesc_numbered_register (feature, tdesc_data,
PPC_FPSCR_REGNUM, "fpscr");
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
have_fpu = 1;
}
else
have_fpu = 0;
/* The DFP pseudo-registers will be available when there are floating
point registers. */
have_dfp = have_fpu;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.altivec");
if (feature != NULL)
{
static const char *const vector_regs[] = {
"vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
"vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
"vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
"vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
};
valid_p = 1;
for (i = 0; i < ppc_num_gprs; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data,
PPC_VR0_REGNUM + i,
vector_regs[i]);
valid_p &= tdesc_numbered_register (feature, tdesc_data,
PPC_VSCR_REGNUM, "vscr");
valid_p &= tdesc_numbered_register (feature, tdesc_data,
PPC_VRSAVE_REGNUM, "vrsave");
if (have_spe || !valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
have_altivec = 1;
}
else
have_altivec = 0;
/* Check for POWER7 VSX registers support. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.vsx");
if (feature != NULL)
{
static const char *const vsx_regs[] = {
"vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
"vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
"vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
"vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
"vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
"vs30h", "vs31h"
};
valid_p = 1;
for (i = 0; i < ppc_num_vshrs; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data,
PPC_VSR0_UPPER_REGNUM + i,
vsx_regs[i]);
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
have_vsx = 1;
}
else
have_vsx = 0;
/* On machines supporting the SPE APU, the general-purpose registers
are 64 bits long. There are SIMD vector instructions to treat them
as pairs of floats, but the rest of the instruction set treats them
as 32-bit registers, and only operates on their lower halves.
In the GDB regcache, we treat their high and low halves as separate
registers. The low halves we present as the general-purpose
registers, and then we have pseudo-registers that stitch together
the upper and lower halves and present them as pseudo-registers.
Thus, the target description is expected to supply the upper
halves separately. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.power.spe");
if (feature != NULL)
{
static const char *const upper_spe[] = {
"ev0h", "ev1h", "ev2h", "ev3h",
"ev4h", "ev5h", "ev6h", "ev7h",
"ev8h", "ev9h", "ev10h", "ev11h",
"ev12h", "ev13h", "ev14h", "ev15h",
"ev16h", "ev17h", "ev18h", "ev19h",
"ev20h", "ev21h", "ev22h", "ev23h",
"ev24h", "ev25h", "ev26h", "ev27h",
"ev28h", "ev29h", "ev30h", "ev31h"
};
valid_p = 1;
for (i = 0; i < ppc_num_gprs; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data,
PPC_SPE_UPPER_GP0_REGNUM + i,
upper_spe[i]);
valid_p &= tdesc_numbered_register (feature, tdesc_data,
PPC_SPE_ACC_REGNUM, "acc");
valid_p &= tdesc_numbered_register (feature, tdesc_data,
PPC_SPE_FSCR_REGNUM, "spefscr");
if (have_mq || have_fpu || !valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
have_spe = 1;
}
else
have_spe = 0;
}
/* If we have a 64-bit binary on a 32-bit target, complain. Also
complain for a 32-bit binary on a 64-bit target; we do not yet
support that. For instance, the 32-bit ABI routines expect
32-bit GPRs.
As long as there isn't an explicit target description, we'll
choose one based on the BFD architecture and get a word size
matching the binary (probably powerpc:common or
powerpc:common64). So there is only trouble if a 64-bit target
supplies a 64-bit description while debugging a 32-bit
binary. */
if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
#ifdef HAVE_ELF
if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
{
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
Tag_GNU_Power_ABI_FP))
{
case 1:
soft_float_flag = AUTO_BOOLEAN_FALSE;
break;
case 2:
soft_float_flag = AUTO_BOOLEAN_TRUE;
break;
default:
break;
}
}
if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
{
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
Tag_GNU_Power_ABI_Vector))
{
case 1:
vector_abi = POWERPC_VEC_GENERIC;
break;
case 2:
vector_abi = POWERPC_VEC_ALTIVEC;
break;
case 3:
vector_abi = POWERPC_VEC_SPE;
break;
default:
break;
}
}
#endif
if (soft_float_flag == AUTO_BOOLEAN_TRUE)
soft_float = 1;
else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
soft_float = 0;
else
soft_float = !have_fpu;
/* If we have a hard float binary or setting but no floating point
registers, downgrade to soft float anyway. We're still somewhat
useful in this scenario. */
if (!soft_float && !have_fpu)
soft_float = 1;
/* Similarly for vector registers. */
if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
vector_abi = POWERPC_VEC_GENERIC;
if (vector_abi == POWERPC_VEC_SPE && !have_spe)
vector_abi = POWERPC_VEC_GENERIC;
if (vector_abi == POWERPC_VEC_AUTO)
{
if (have_altivec)
vector_abi = POWERPC_VEC_ALTIVEC;
else if (have_spe)
vector_abi = POWERPC_VEC_SPE;
else
vector_abi = POWERPC_VEC_GENERIC;
}
/* Do not limit the vector ABI based on available hardware, since we
do not yet know what hardware we'll decide we have. Yuck! FIXME! */
/* Find a candidate among extant architectures. */
for (arches = gdbarch_list_lookup_by_info (arches, &info);
arches != NULL;
arches = gdbarch_list_lookup_by_info (arches->next, &info))
{
/* Word size in the various PowerPC bfd_arch_info structs isn't
meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
separate word size check. */
tdep = gdbarch_tdep (arches->gdbarch);
if (tdep && tdep->soft_float != soft_float)
continue;
if (tdep && tdep->vector_abi != vector_abi)
continue;
if (tdep && tdep->wordsize == wordsize)
{
if (tdesc_data != NULL)
tdesc_data_cleanup (tdesc_data);
return arches->gdbarch;
}
}
/* None found, create a new architecture from INFO, whose bfd_arch_info
validity depends on the source:
- executable useless
- rs6000_host_arch() good
- core file good
- "set arch" trust blindly
- GDB startup useless but harmless */
tdep = XCALLOC (1, struct gdbarch_tdep);
tdep->wordsize = wordsize;
tdep->soft_float = soft_float;
tdep->vector_abi = vector_abi;
gdbarch = gdbarch_alloc (&info, tdep);
tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
tdep->ppc_cr_regnum = PPC_CR_REGNUM;
tdep->ppc_lr_regnum = PPC_LR_REGNUM;
tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
tdep->ppc_xer_regnum = PPC_XER_REGNUM;
tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
/* The XML specification for PowerPC sensibly calls the MSR "msr".
GDB traditionally called it "ps", though, so let GDB add an
alias. */
set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
if (wordsize == 8)
set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
else
set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
/* Set lr_frame_offset. */
if (wordsize == 8)
tdep->lr_frame_offset = 16;
else
tdep->lr_frame_offset = 4;
if (have_spe || have_dfp || have_vsx)
{
set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch,
rs6000_pseudo_register_write);
}
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
/* Select instruction printer. */
if (arch == bfd_arch_rs6000)
set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
else
set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
if (have_spe)
num_pseudoregs += 32;
if (have_dfp)
num_pseudoregs += 16;
if (have_vsx)
/* Include both VSX and Extended FP registers. */
num_pseudoregs += 96;
set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
set_gdbarch_char_signed (gdbarch, 0);
set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
if (wordsize == 8)
/* PPC64 SYSV. */
set_gdbarch_frame_red_zone_size (gdbarch, 288);
set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
if (wordsize == 4)
set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
else if (wordsize == 8)
set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
/* The value of symbols of type N_SO and N_FUN maybe null when
it shouldn't be. */
set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
/* Handles single stepping of atomic sequences. */
set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
/* Not sure on this. FIXMEmgo */
set_gdbarch_frame_args_skip (gdbarch, 8);
/* Helpers for function argument information. */
set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
/* Trampoline. */
set_gdbarch_in_solib_return_trampoline
(gdbarch, rs6000_in_solib_return_trampoline);
set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
/* Hook in the DWARF CFI frame unwinder. */
dwarf2_append_unwinders (gdbarch);
dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
/* Frame handling. */
dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
/* Setup displaced stepping. */
set_gdbarch_displaced_step_copy_insn (gdbarch,
simple_displaced_step_copy_insn);
set_gdbarch_displaced_step_hw_singlestep (gdbarch,
ppc_displaced_step_hw_singlestep);
set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
set_gdbarch_displaced_step_free_closure (gdbarch,
simple_displaced_step_free_closure);
set_gdbarch_displaced_step_location (gdbarch,
displaced_step_at_entry_point);
set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
/* Hook in ABI-specific overrides, if they have been registered. */
info.target_desc = tdesc;
info.tdep_info = (void *) tdesc_data;
gdbarch_init_osabi (info, gdbarch);
switch (info.osabi)
{
case GDB_OSABI_LINUX:
case GDB_OSABI_NETBSD_AOUT:
case GDB_OSABI_NETBSD_ELF:
case GDB_OSABI_UNKNOWN:
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
break;
default:
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
}
set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
set_tdesc_pseudo_register_reggroup_p (gdbarch,
rs6000_pseudo_register_reggroup_p);
tdesc_use_registers (gdbarch, tdesc, tdesc_data);
/* Override the normal target description method to make the SPE upper
halves anonymous. */
set_gdbarch_register_name (gdbarch, rs6000_register_name);
/* Choose register numbers for all supported pseudo-registers. */
tdep->ppc_ev0_regnum = -1;
tdep->ppc_dl0_regnum = -1;
tdep->ppc_vsr0_regnum = -1;
tdep->ppc_efpr0_regnum = -1;
cur_reg = gdbarch_num_regs (gdbarch);
if (have_spe)
{
tdep->ppc_ev0_regnum = cur_reg;
cur_reg += 32;
}
if (have_dfp)
{
tdep->ppc_dl0_regnum = cur_reg;
cur_reg += 16;
}
if (have_vsx)
{
tdep->ppc_vsr0_regnum = cur_reg;
cur_reg += 64;
tdep->ppc_efpr0_regnum = cur_reg;
cur_reg += 32;
}
gdb_assert (gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
/* Register the ravenscar_arch_ops. */
if (mach == bfd_mach_ppc_e500)
register_e500_ravenscar_ops (gdbarch);
else
register_ppc_ravenscar_ops (gdbarch);
return gdbarch;
}
static void
rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (tdep == NULL)
return;
/* FIXME: Dump gdbarch_tdep. */
}
/* PowerPC-specific commands. */
static void
set_powerpc_command (char *args, int from_tty)
{
printf_unfiltered (_("\
\"set powerpc\" must be followed by an appropriate subcommand.\n"));
help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
}
static void
show_powerpc_command (char *args, int from_tty)
{
cmd_show_list (showpowerpccmdlist, from_tty, "");
}
static void
powerpc_set_soft_float (char *args, int from_tty,
struct cmd_list_element *c)
{
struct gdbarch_info info;
/* Update the architecture. */
gdbarch_info_init (&info);
if (!gdbarch_update_p (info))
internal_error (__FILE__, __LINE__, _("could not update architecture"));
}
static void
powerpc_set_vector_abi (char *args, int from_tty,
struct cmd_list_element *c)
{
struct gdbarch_info info;
enum powerpc_vector_abi vector_abi;
for (vector_abi = POWERPC_VEC_AUTO;
vector_abi != POWERPC_VEC_LAST;
vector_abi++)
if (strcmp (powerpc_vector_abi_string,
powerpc_vector_strings[vector_abi]) == 0)
{
powerpc_vector_abi_global = vector_abi;
break;
}
if (vector_abi == POWERPC_VEC_LAST)
internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
powerpc_vector_abi_string);
/* Update the architecture. */
gdbarch_info_init (&info);
if (!gdbarch_update_p (info))
internal_error (__FILE__, __LINE__, _("could not update architecture"));
}
/* Show the current setting of the exact watchpoints flag. */
static void
show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
}
/* Read a PPC instruction from memory. */
static unsigned int
read_insn (struct frame_info *frame, CORE_ADDR pc)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
return read_memory_unsigned_integer (pc, 4, byte_order);
}
/* Return non-zero if the instructions at PC match the series
described in PATTERN, or zero otherwise. PATTERN is an array of
'struct ppc_insn_pattern' objects, terminated by an entry whose
mask is zero.
When the match is successful, fill INSN[i] with what PATTERN[i]
matched. If PATTERN[i] is optional, and the instruction wasn't
present, set INSN[i] to 0 (which is not a valid PPC instruction).
INSN should have as many elements as PATTERN. Note that, if
PATTERN contains optional instructions which aren't present in
memory, then INSN will have holes, so INSN[i] isn't necessarily the
i'th instruction in memory. */
int
ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
struct ppc_insn_pattern *pattern,
unsigned int *insns)
{
int i;
unsigned int insn;
for (i = 0, insn = 0; pattern[i].mask; i++)
{
if (insn == 0)
insn = read_insn (frame, pc);
insns[i] = 0;
if ((insn & pattern[i].mask) == pattern[i].data)
{
insns[i] = insn;
pc += 4;
insn = 0;
}
else if (!pattern[i].optional)
return 0;
}
return 1;
}
/* Return the 'd' field of the d-form instruction INSN, properly
sign-extended. */
CORE_ADDR
ppc_insn_d_field (unsigned int insn)
{
return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
}
/* Return the 'ds' field of the ds-form instruction INSN, with the two
zero bits concatenated at the right, and properly
sign-extended. */
CORE_ADDR
ppc_insn_ds_field (unsigned int insn)
{
return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
}
/* Initialization code. */
/* -Wmissing-prototypes */
extern initialize_file_ftype _initialize_rs6000_tdep;
void
_initialize_rs6000_tdep (void)
{
gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
/* Initialize the standard target descriptions. */
initialize_tdesc_powerpc_32 ();
initialize_tdesc_powerpc_altivec32 ();
initialize_tdesc_powerpc_vsx32 ();
initialize_tdesc_powerpc_403 ();
initialize_tdesc_powerpc_403gc ();
initialize_tdesc_powerpc_405 ();
initialize_tdesc_powerpc_505 ();
initialize_tdesc_powerpc_601 ();
initialize_tdesc_powerpc_602 ();
initialize_tdesc_powerpc_603 ();
initialize_tdesc_powerpc_604 ();
initialize_tdesc_powerpc_64 ();
initialize_tdesc_powerpc_altivec64 ();
initialize_tdesc_powerpc_vsx64 ();
initialize_tdesc_powerpc_7400 ();
initialize_tdesc_powerpc_750 ();
initialize_tdesc_powerpc_860 ();
initialize_tdesc_powerpc_e500 ();
initialize_tdesc_rs6000 ();
/* Add root prefix command for all "set powerpc"/"show powerpc"
commands. */
add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
_("Various PowerPC-specific commands."),
&setpowerpccmdlist, "set powerpc ", 0, &setlist);
add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
_("Various PowerPC-specific commands."),
&showpowerpccmdlist, "show powerpc ", 0, &showlist);
/* Add a command to allow the user to force the ABI. */
add_setshow_auto_boolean_cmd ("soft-float", class_support,
&powerpc_soft_float_global,
_("Set whether to use a soft-float ABI."),
_("Show whether to use a soft-float ABI."),
NULL,
powerpc_set_soft_float, NULL,
&setpowerpccmdlist, &showpowerpccmdlist);
add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
&powerpc_vector_abi_string,
_("Set the vector ABI."),
_("Show the vector ABI."),
NULL, powerpc_set_vector_abi, NULL,
&setpowerpccmdlist, &showpowerpccmdlist);
add_setshow_boolean_cmd ("exact-watchpoints", class_support,
&target_exact_watchpoints,
_("\
Set whether to use just one debug register for watchpoints on scalars."),
_("\
Show whether to use just one debug register for watchpoints on scalars."),
_("\
If true, GDB will use only one debug register when watching a variable of\n\
scalar type, thus assuming that the variable is accessed through the address\n\
of its first byte."),
NULL, show_powerpc_exact_watchpoints,
&setpowerpccmdlist, &showpowerpccmdlist);
}
|