aboutsummaryrefslogtreecommitdiff
blob: 8df862ba3f8f2862081b30a5175bad8b0a929e97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
/* Select target systems and architectures at runtime for GDB.

   Copyright (C) 1990-2015 Free Software Foundation, Inc.

   Contributed by Cygnus Support.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "target.h"
#include "target-dcache.h"
#include "gdbcmd.h"
#include "symtab.h"
#include "inferior.h"
#include "infrun.h"
#include "bfd.h"
#include "symfile.h"
#include "objfiles.h"
#include "dcache.h"
#include <signal.h>
#include "regcache.h"
#include "gdbcore.h"
#include "target-descriptions.h"
#include "gdbthread.h"
#include "solib.h"
#include "exec.h"
#include "inline-frame.h"
#include "tracepoint.h"
#include "gdb/fileio.h"
#include "agent.h"
#include "auxv.h"
#include "target-debug.h"

static void target_info (char *, int);

static void generic_tls_error (void) ATTRIBUTE_NORETURN;

static void default_terminal_info (struct target_ops *, const char *, int);

static int default_watchpoint_addr_within_range (struct target_ops *,
						 CORE_ADDR, CORE_ADDR, int);

static int default_region_ok_for_hw_watchpoint (struct target_ops *,
						CORE_ADDR, int);

static void default_rcmd (struct target_ops *, const char *, struct ui_file *);

static ptid_t default_get_ada_task_ptid (struct target_ops *self,
					 long lwp, long tid);

static int default_follow_fork (struct target_ops *self, int follow_child,
				int detach_fork);

static void default_mourn_inferior (struct target_ops *self);

static int default_search_memory (struct target_ops *ops,
				  CORE_ADDR start_addr,
				  ULONGEST search_space_len,
				  const gdb_byte *pattern,
				  ULONGEST pattern_len,
				  CORE_ADDR *found_addrp);

static int default_verify_memory (struct target_ops *self,
				  const gdb_byte *data,
				  CORE_ADDR memaddr, ULONGEST size);

static struct address_space *default_thread_address_space
     (struct target_ops *self, ptid_t ptid);

static void tcomplain (void) ATTRIBUTE_NORETURN;

static int return_zero (struct target_ops *);

static int return_zero_has_execution (struct target_ops *, ptid_t);

static void target_command (char *, int);

static struct target_ops *find_default_run_target (char *);

static struct gdbarch *default_thread_architecture (struct target_ops *ops,
						    ptid_t ptid);

static int dummy_find_memory_regions (struct target_ops *self,
				      find_memory_region_ftype ignore1,
				      void *ignore2);

static char *dummy_make_corefile_notes (struct target_ops *self,
					bfd *ignore1, int *ignore2);

static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);

static enum exec_direction_kind default_execution_direction
    (struct target_ops *self);

static struct target_ops debug_target;

#include "target-delegates.c"

static void init_dummy_target (void);

static void update_current_target (void);

/* Vector of existing target structures. */
typedef struct target_ops *target_ops_p;
DEF_VEC_P (target_ops_p);
static VEC (target_ops_p) *target_structs;

/* The initial current target, so that there is always a semi-valid
   current target.  */

static struct target_ops dummy_target;

/* Top of target stack.  */

static struct target_ops *target_stack;

/* The target structure we are currently using to talk to a process
   or file or whatever "inferior" we have.  */

struct target_ops current_target;

/* Command list for target.  */

static struct cmd_list_element *targetlist = NULL;

/* Nonzero if we should trust readonly sections from the
   executable when reading memory.  */

static int trust_readonly = 0;

/* Nonzero if we should show true memory content including
   memory breakpoint inserted by gdb.  */

static int show_memory_breakpoints = 0;

/* These globals control whether GDB attempts to perform these
   operations; they are useful for targets that need to prevent
   inadvertant disruption, such as in non-stop mode.  */

int may_write_registers = 1;

int may_write_memory = 1;

int may_insert_breakpoints = 1;

int may_insert_tracepoints = 1;

int may_insert_fast_tracepoints = 1;

int may_stop = 1;

/* Non-zero if we want to see trace of target level stuff.  */

static unsigned int targetdebug = 0;

static void
set_targetdebug  (char *args, int from_tty, struct cmd_list_element *c)
{
  update_current_target ();
}

static void
show_targetdebug (struct ui_file *file, int from_tty,
		  struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Target debugging is %s.\n"), value);
}

static void setup_target_debug (void);

/* The user just typed 'target' without the name of a target.  */

static void
target_command (char *arg, int from_tty)
{
  fputs_filtered ("Argument required (target name).  Try `help target'\n",
		  gdb_stdout);
}

/* Default target_has_* methods for process_stratum targets.  */

int
default_child_has_all_memory (struct target_ops *ops)
{
  /* If no inferior selected, then we can't read memory here.  */
  if (ptid_equal (inferior_ptid, null_ptid))
    return 0;

  return 1;
}

int
default_child_has_memory (struct target_ops *ops)
{
  /* If no inferior selected, then we can't read memory here.  */
  if (ptid_equal (inferior_ptid, null_ptid))
    return 0;

  return 1;
}

int
default_child_has_stack (struct target_ops *ops)
{
  /* If no inferior selected, there's no stack.  */
  if (ptid_equal (inferior_ptid, null_ptid))
    return 0;

  return 1;
}

int
default_child_has_registers (struct target_ops *ops)
{
  /* Can't read registers from no inferior.  */
  if (ptid_equal (inferior_ptid, null_ptid))
    return 0;

  return 1;
}

int
default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
{
  /* If there's no thread selected, then we can't make it run through
     hoops.  */
  if (ptid_equal (the_ptid, null_ptid))
    return 0;

  return 1;
}


int
target_has_all_memory_1 (void)
{
  struct target_ops *t;

  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_has_all_memory (t))
      return 1;

  return 0;
}

int
target_has_memory_1 (void)
{
  struct target_ops *t;

  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_has_memory (t))
      return 1;

  return 0;
}

int
target_has_stack_1 (void)
{
  struct target_ops *t;

  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_has_stack (t))
      return 1;

  return 0;
}

int
target_has_registers_1 (void)
{
  struct target_ops *t;

  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_has_registers (t))
      return 1;

  return 0;
}

int
target_has_execution_1 (ptid_t the_ptid)
{
  struct target_ops *t;

  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_has_execution (t, the_ptid))
      return 1;

  return 0;
}

int
target_has_execution_current (void)
{
  return target_has_execution_1 (inferior_ptid);
}

/* Complete initialization of T.  This ensures that various fields in
   T are set, if needed by the target implementation.  */

void
complete_target_initialization (struct target_ops *t)
{
  /* Provide default values for all "must have" methods.  */

  if (t->to_has_all_memory == NULL)
    t->to_has_all_memory = return_zero;

  if (t->to_has_memory == NULL)
    t->to_has_memory = return_zero;

  if (t->to_has_stack == NULL)
    t->to_has_stack = return_zero;

  if (t->to_has_registers == NULL)
    t->to_has_registers = return_zero;

  if (t->to_has_execution == NULL)
    t->to_has_execution = return_zero_has_execution;

  /* These methods can be called on an unpushed target and so require
     a default implementation if the target might plausibly be the
     default run target.  */
  gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
					&& t->to_supports_non_stop != NULL));

  install_delegators (t);
}

/* This is used to implement the various target commands.  */

static void
open_target (char *args, int from_tty, struct cmd_list_element *command)
{
  struct target_ops *ops = get_cmd_context (command);

  if (targetdebug)
    fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
			ops->to_shortname);

  ops->to_open (args, from_tty);

  if (targetdebug)
    fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
			ops->to_shortname, args, from_tty);
}

/* Add possible target architecture T to the list and add a new
   command 'target T->to_shortname'.  Set COMPLETER as the command's
   completer if not NULL.  */

void
add_target_with_completer (struct target_ops *t,
			   completer_ftype *completer)
{
  struct cmd_list_element *c;

  complete_target_initialization (t);

  VEC_safe_push (target_ops_p, target_structs, t);

  if (targetlist == NULL)
    add_prefix_cmd ("target", class_run, target_command, _("\
Connect to a target machine or process.\n\
The first argument is the type or protocol of the target machine.\n\
Remaining arguments are interpreted by the target protocol.  For more\n\
information on the arguments for a particular protocol, type\n\
`help target ' followed by the protocol name."),
		    &targetlist, "target ", 0, &cmdlist);
  c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
  set_cmd_sfunc (c, open_target);
  set_cmd_context (c, t);
  if (completer != NULL)
    set_cmd_completer (c, completer);
}

/* Add a possible target architecture to the list.  */

void
add_target (struct target_ops *t)
{
  add_target_with_completer (t, NULL);
}

/* See target.h.  */

void
add_deprecated_target_alias (struct target_ops *t, char *alias)
{
  struct cmd_list_element *c;
  char *alt;

  /* If we use add_alias_cmd, here, we do not get the deprecated warning,
     see PR cli/15104.  */
  c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
  set_cmd_sfunc (c, open_target);
  set_cmd_context (c, t);
  alt = xstrprintf ("target %s", t->to_shortname);
  deprecate_cmd (c, alt);
}

/* Stub functions */

void
target_kill (void)
{
  current_target.to_kill (&current_target);
}

void
target_load (const char *arg, int from_tty)
{
  target_dcache_invalidate ();
  (*current_target.to_load) (&current_target, arg, from_tty);
}

/* Possible terminal states.  */

enum terminal_state
  {
    /* The inferior's terminal settings are in effect.  */
    terminal_is_inferior = 0,

    /* Some of our terminal settings are in effect, enough to get
       proper output.  */
    terminal_is_ours_for_output = 1,

    /* Our terminal settings are in effect, for output and input.  */
    terminal_is_ours = 2
  };

static enum terminal_state terminal_state = terminal_is_ours;

/* See target.h.  */

void
target_terminal_init (void)
{
  (*current_target.to_terminal_init) (&current_target);

  terminal_state = terminal_is_ours;
}

/* See target.h.  */

int
target_terminal_is_inferior (void)
{
  return (terminal_state == terminal_is_inferior);
}

/* See target.h.  */

void
target_terminal_inferior (void)
{
  /* A background resume (``run&'') should leave GDB in control of the
     terminal.  Use target_can_async_p, not target_is_async_p, since at
     this point the target is not async yet.  However, if sync_execution
     is not set, we know it will become async prior to resume.  */
  if (target_can_async_p () && !sync_execution)
    return;

  if (terminal_state == terminal_is_inferior)
    return;

  /* If GDB is resuming the inferior in the foreground, install
     inferior's terminal modes.  */
  (*current_target.to_terminal_inferior) (&current_target);
  terminal_state = terminal_is_inferior;
}

/* See target.h.  */

void
target_terminal_ours (void)
{
  if (terminal_state == terminal_is_ours)
    return;

  (*current_target.to_terminal_ours) (&current_target);
  terminal_state = terminal_is_ours;
}

/* See target.h.  */

void
target_terminal_ours_for_output (void)
{
  if (terminal_state != terminal_is_inferior)
    return;
  (*current_target.to_terminal_ours_for_output) (&current_target);
  terminal_state = terminal_is_ours_for_output;
}

/* See target.h.  */

int
target_supports_terminal_ours (void)
{
  struct target_ops *t;

  for (t = current_target.beneath; t != NULL; t = t->beneath)
    {
      if (t->to_terminal_ours != delegate_terminal_ours
	  && t->to_terminal_ours != tdefault_terminal_ours)
	return 1;
    }

  return 0;
}

/* Restore the terminal to its previous state (helper for
   make_cleanup_restore_target_terminal). */

static void
cleanup_restore_target_terminal (void *arg)
{
  enum terminal_state *previous_state = arg;

  switch (*previous_state)
    {
    case terminal_is_ours:
      target_terminal_ours ();
      break;
    case terminal_is_ours_for_output:
      target_terminal_ours_for_output ();
      break;
    case terminal_is_inferior:
      target_terminal_inferior ();
      break;
    }
}

/* See target.h. */

struct cleanup *
make_cleanup_restore_target_terminal (void)
{
  enum terminal_state *ts = XNEW (enum terminal_state);

  *ts = terminal_state;

  return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
}

static void
tcomplain (void)
{
  error (_("You can't do that when your target is `%s'"),
	 current_target.to_shortname);
}

void
noprocess (void)
{
  error (_("You can't do that without a process to debug."));
}

static void
default_terminal_info (struct target_ops *self, const char *args, int from_tty)
{
  printf_unfiltered (_("No saved terminal information.\n"));
}

/* A default implementation for the to_get_ada_task_ptid target method.

   This function builds the PTID by using both LWP and TID as part of
   the PTID lwp and tid elements.  The pid used is the pid of the
   inferior_ptid.  */

static ptid_t
default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
{
  return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
}

static enum exec_direction_kind
default_execution_direction (struct target_ops *self)
{
  if (!target_can_execute_reverse)
    return EXEC_FORWARD;
  else if (!target_can_async_p ())
    return EXEC_FORWARD;
  else
    gdb_assert_not_reached ("\
to_execution_direction must be implemented for reverse async");
}

/* Go through the target stack from top to bottom, copying over zero
   entries in current_target, then filling in still empty entries.  In
   effect, we are doing class inheritance through the pushed target
   vectors.

   NOTE: cagney/2003-10-17: The problem with this inheritance, as it
   is currently implemented, is that it discards any knowledge of
   which target an inherited method originally belonged to.
   Consequently, new new target methods should instead explicitly and
   locally search the target stack for the target that can handle the
   request.  */

static void
update_current_target (void)
{
  struct target_ops *t;

  /* First, reset current's contents.  */
  memset (&current_target, 0, sizeof (current_target));

  /* Install the delegators.  */
  install_delegators (&current_target);

  current_target.to_stratum = target_stack->to_stratum;

#define INHERIT(FIELD, TARGET) \
      if (!current_target.FIELD) \
	current_target.FIELD = (TARGET)->FIELD

  /* Do not add any new INHERITs here.  Instead, use the delegation
     mechanism provided by make-target-delegates.  */
  for (t = target_stack; t; t = t->beneath)
    {
      INHERIT (to_shortname, t);
      INHERIT (to_longname, t);
      INHERIT (to_attach_no_wait, t);
      INHERIT (to_have_steppable_watchpoint, t);
      INHERIT (to_have_continuable_watchpoint, t);
      INHERIT (to_has_thread_control, t);
    }
#undef INHERIT

  /* Finally, position the target-stack beneath the squashed
     "current_target".  That way code looking for a non-inherited
     target method can quickly and simply find it.  */
  current_target.beneath = target_stack;

  if (targetdebug)
    setup_target_debug ();
}

/* Push a new target type into the stack of the existing target accessors,
   possibly superseding some of the existing accessors.

   Rather than allow an empty stack, we always have the dummy target at
   the bottom stratum, so we can call the function vectors without
   checking them.  */

void
push_target (struct target_ops *t)
{
  struct target_ops **cur;

  /* Check magic number.  If wrong, it probably means someone changed
     the struct definition, but not all the places that initialize one.  */
  if (t->to_magic != OPS_MAGIC)
    {
      fprintf_unfiltered (gdb_stderr,
			  "Magic number of %s target struct wrong\n",
			  t->to_shortname);
      internal_error (__FILE__, __LINE__,
		      _("failed internal consistency check"));
    }

  /* Find the proper stratum to install this target in.  */
  for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
    {
      if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
	break;
    }

  /* If there's already targets at this stratum, remove them.  */
  /* FIXME: cagney/2003-10-15: I think this should be popping all
     targets to CUR, and not just those at this stratum level.  */
  while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
    {
      /* There's already something at this stratum level.  Close it,
         and un-hook it from the stack.  */
      struct target_ops *tmp = (*cur);

      (*cur) = (*cur)->beneath;
      tmp->beneath = NULL;
      target_close (tmp);
    }

  /* We have removed all targets in our stratum, now add the new one.  */
  t->beneath = (*cur);
  (*cur) = t;

  update_current_target ();
}

/* Remove a target_ops vector from the stack, wherever it may be.
   Return how many times it was removed (0 or 1).  */

int
unpush_target (struct target_ops *t)
{
  struct target_ops **cur;
  struct target_ops *tmp;

  if (t->to_stratum == dummy_stratum)
    internal_error (__FILE__, __LINE__,
		    _("Attempt to unpush the dummy target"));

  /* Look for the specified target.  Note that we assume that a target
     can only occur once in the target stack.  */

  for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
    {
      if ((*cur) == t)
	break;
    }

  /* If we don't find target_ops, quit.  Only open targets should be
     closed.  */
  if ((*cur) == NULL)
    return 0;			

  /* Unchain the target.  */
  tmp = (*cur);
  (*cur) = (*cur)->beneath;
  tmp->beneath = NULL;

  update_current_target ();

  /* Finally close the target.  Note we do this after unchaining, so
     any target method calls from within the target_close
     implementation don't end up in T anymore.  */
  target_close (t);

  return 1;
}

void
pop_all_targets_above (enum strata above_stratum)
{
  while ((int) (current_target.to_stratum) > (int) above_stratum)
    {
      if (!unpush_target (target_stack))
	{
	  fprintf_unfiltered (gdb_stderr,
			      "pop_all_targets couldn't find target %s\n",
			      target_stack->to_shortname);
	  internal_error (__FILE__, __LINE__,
			  _("failed internal consistency check"));
	  break;
	}
    }
}

void
pop_all_targets (void)
{
  pop_all_targets_above (dummy_stratum);
}

/* Return 1 if T is now pushed in the target stack.  Return 0 otherwise.  */

int
target_is_pushed (struct target_ops *t)
{
  struct target_ops *cur;

  /* Check magic number.  If wrong, it probably means someone changed
     the struct definition, but not all the places that initialize one.  */
  if (t->to_magic != OPS_MAGIC)
    {
      fprintf_unfiltered (gdb_stderr,
			  "Magic number of %s target struct wrong\n",
			  t->to_shortname);
      internal_error (__FILE__, __LINE__,
		      _("failed internal consistency check"));
    }

  for (cur = target_stack; cur != NULL; cur = cur->beneath)
    if (cur == t)
      return 1;

  return 0;
}

/* Default implementation of to_get_thread_local_address.  */

static void
generic_tls_error (void)
{
  throw_error (TLS_GENERIC_ERROR,
	       _("Cannot find thread-local variables on this target"));
}

/* Using the objfile specified in OBJFILE, find the address for the
   current thread's thread-local storage with offset OFFSET.  */
CORE_ADDR
target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
{
  volatile CORE_ADDR addr = 0;
  struct target_ops *target = &current_target;

  if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
    {
      ptid_t ptid = inferior_ptid;

      TRY
	{
	  CORE_ADDR lm_addr;
	  
	  /* Fetch the load module address for this objfile.  */
	  lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
	                                                   objfile);

	  addr = target->to_get_thread_local_address (target, ptid,
						      lm_addr, offset);
	}
      /* If an error occurred, print TLS related messages here.  Otherwise,
         throw the error to some higher catcher.  */
      CATCH (ex, RETURN_MASK_ALL)
	{
	  int objfile_is_library = (objfile->flags & OBJF_SHARED);

	  switch (ex.error)
	    {
	    case TLS_NO_LIBRARY_SUPPORT_ERROR:
	      error (_("Cannot find thread-local variables "
		       "in this thread library."));
	      break;
	    case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
	      if (objfile_is_library)
		error (_("Cannot find shared library `%s' in dynamic"
		         " linker's load module list"), objfile_name (objfile));
	      else
		error (_("Cannot find executable file `%s' in dynamic"
		         " linker's load module list"), objfile_name (objfile));
	      break;
	    case TLS_NOT_ALLOCATED_YET_ERROR:
	      if (objfile_is_library)
		error (_("The inferior has not yet allocated storage for"
		         " thread-local variables in\n"
		         "the shared library `%s'\n"
		         "for %s"),
		       objfile_name (objfile), target_pid_to_str (ptid));
	      else
		error (_("The inferior has not yet allocated storage for"
		         " thread-local variables in\n"
		         "the executable `%s'\n"
		         "for %s"),
		       objfile_name (objfile), target_pid_to_str (ptid));
	      break;
	    case TLS_GENERIC_ERROR:
	      if (objfile_is_library)
		error (_("Cannot find thread-local storage for %s, "
		         "shared library %s:\n%s"),
		       target_pid_to_str (ptid),
		       objfile_name (objfile), ex.message);
	      else
		error (_("Cannot find thread-local storage for %s, "
		         "executable file %s:\n%s"),
		       target_pid_to_str (ptid),
		       objfile_name (objfile), ex.message);
	      break;
	    default:
	      throw_exception (ex);
	      break;
	    }
	}
      END_CATCH
    }
  /* It wouldn't be wrong here to try a gdbarch method, too; finding
     TLS is an ABI-specific thing.  But we don't do that yet.  */
  else
    error (_("Cannot find thread-local variables on this target"));

  return addr;
}

const char *
target_xfer_status_to_string (enum target_xfer_status status)
{
#define CASE(X) case X: return #X
  switch (status)
    {
      CASE(TARGET_XFER_E_IO);
      CASE(TARGET_XFER_UNAVAILABLE);
    default:
      return "<unknown>";
    }
#undef CASE
};


#undef	MIN
#define MIN(A, B) (((A) <= (B)) ? (A) : (B))

/* target_read_string -- read a null terminated string, up to LEN bytes,
   from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
   Set *STRING to a pointer to malloc'd memory containing the data; the caller
   is responsible for freeing it.  Return the number of bytes successfully
   read.  */

int
target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
{
  int tlen, offset, i;
  gdb_byte buf[4];
  int errcode = 0;
  char *buffer;
  int buffer_allocated;
  char *bufptr;
  unsigned int nbytes_read = 0;

  gdb_assert (string);

  /* Small for testing.  */
  buffer_allocated = 4;
  buffer = xmalloc (buffer_allocated);
  bufptr = buffer;

  while (len > 0)
    {
      tlen = MIN (len, 4 - (memaddr & 3));
      offset = memaddr & 3;

      errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
      if (errcode != 0)
	{
	  /* The transfer request might have crossed the boundary to an
	     unallocated region of memory.  Retry the transfer, requesting
	     a single byte.  */
	  tlen = 1;
	  offset = 0;
	  errcode = target_read_memory (memaddr, buf, 1);
	  if (errcode != 0)
	    goto done;
	}

      if (bufptr - buffer + tlen > buffer_allocated)
	{
	  unsigned int bytes;

	  bytes = bufptr - buffer;
	  buffer_allocated *= 2;
	  buffer = xrealloc (buffer, buffer_allocated);
	  bufptr = buffer + bytes;
	}

      for (i = 0; i < tlen; i++)
	{
	  *bufptr++ = buf[i + offset];
	  if (buf[i + offset] == '\000')
	    {
	      nbytes_read += i + 1;
	      goto done;
	    }
	}

      memaddr += tlen;
      len -= tlen;
      nbytes_read += tlen;
    }
done:
  *string = buffer;
  if (errnop != NULL)
    *errnop = errcode;
  return nbytes_read;
}

struct target_section_table *
target_get_section_table (struct target_ops *target)
{
  return (*target->to_get_section_table) (target);
}

/* Find a section containing ADDR.  */

struct target_section *
target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
{
  struct target_section_table *table = target_get_section_table (target);
  struct target_section *secp;

  if (table == NULL)
    return NULL;

  for (secp = table->sections; secp < table->sections_end; secp++)
    {
      if (addr >= secp->addr && addr < secp->endaddr)
	return secp;
    }
  return NULL;
}


/* Helper for the memory xfer routines.  Checks the attributes of the
   memory region of MEMADDR against the read or write being attempted.
   If the access is permitted returns true, otherwise returns false.
   REGION_P is an optional output parameter.  If not-NULL, it is
   filled with a pointer to the memory region of MEMADDR.  REG_LEN
   returns LEN trimmed to the end of the region.  This is how much the
   caller can continue requesting, if the access is permitted.  A
   single xfer request must not straddle memory region boundaries.  */

static int
memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
			  ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
			  struct mem_region **region_p)
{
  struct mem_region *region;

  region = lookup_mem_region (memaddr);

  if (region_p != NULL)
    *region_p = region;

  switch (region->attrib.mode)
    {
    case MEM_RO:
      if (writebuf != NULL)
	return 0;
      break;

    case MEM_WO:
      if (readbuf != NULL)
	return 0;
      break;

    case MEM_FLASH:
      /* We only support writing to flash during "load" for now.  */
      if (writebuf != NULL)
	error (_("Writing to flash memory forbidden in this context"));
      break;

    case MEM_NONE:
      return 0;
    }

  /* region->hi == 0 means there's no upper bound.  */
  if (memaddr + len < region->hi || region->hi == 0)
    *reg_len = len;
  else
    *reg_len = region->hi - memaddr;

  return 1;
}

/* Read memory from more than one valid target.  A core file, for
   instance, could have some of memory but delegate other bits to
   the target below it.  So, we must manually try all targets.  */

enum target_xfer_status
raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
			 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
			 ULONGEST *xfered_len)
{
  enum target_xfer_status res;

  do
    {
      res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
				  readbuf, writebuf, memaddr, len,
				  xfered_len);
      if (res == TARGET_XFER_OK)
	break;

      /* Stop if the target reports that the memory is not available.  */
      if (res == TARGET_XFER_UNAVAILABLE)
	break;

      /* We want to continue past core files to executables, but not
	 past a running target's memory.  */
      if (ops->to_has_all_memory (ops))
	break;

      ops = ops->beneath;
    }
  while (ops != NULL);

  /* The cache works at the raw memory level.  Make sure the cache
     gets updated with raw contents no matter what kind of memory
     object was originally being written.  Note we do write-through
     first, so that if it fails, we don't write to the cache contents
     that never made it to the target.  */
  if (writebuf != NULL
      && !ptid_equal (inferior_ptid, null_ptid)
      && target_dcache_init_p ()
      && (stack_cache_enabled_p () || code_cache_enabled_p ()))
    {
      DCACHE *dcache = target_dcache_get ();

      /* Note that writing to an area of memory which wasn't present
	 in the cache doesn't cause it to be loaded in.  */
      dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
    }

  return res;
}

/* Perform a partial memory transfer.
   For docs see target.h, to_xfer_partial.  */

static enum target_xfer_status
memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
		       gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
		       ULONGEST len, ULONGEST *xfered_len)
{
  enum target_xfer_status res;
  ULONGEST reg_len;
  struct mem_region *region;
  struct inferior *inf;

  /* For accesses to unmapped overlay sections, read directly from
     files.  Must do this first, as MEMADDR may need adjustment.  */
  if (readbuf != NULL && overlay_debugging)
    {
      struct obj_section *section = find_pc_overlay (memaddr);

      if (pc_in_unmapped_range (memaddr, section))
	{
	  struct target_section_table *table
	    = target_get_section_table (ops);
	  const char *section_name = section->the_bfd_section->name;

	  memaddr = overlay_mapped_address (memaddr, section);
	  return section_table_xfer_memory_partial (readbuf, writebuf,
						    memaddr, len, xfered_len,
						    table->sections,
						    table->sections_end,
						    section_name);
	}
    }

  /* Try the executable files, if "trust-readonly-sections" is set.  */
  if (readbuf != NULL && trust_readonly)
    {
      struct target_section *secp;
      struct target_section_table *table;

      secp = target_section_by_addr (ops, memaddr);
      if (secp != NULL
	  && (bfd_get_section_flags (secp->the_bfd_section->owner,
				     secp->the_bfd_section)
	      & SEC_READONLY))
	{
	  table = target_get_section_table (ops);
	  return section_table_xfer_memory_partial (readbuf, writebuf,
						    memaddr, len, xfered_len,
						    table->sections,
						    table->sections_end,
						    NULL);
	}
    }

  /* Try GDB's internal data cache.  */

  if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
				 &region))
    return TARGET_XFER_E_IO;

  if (!ptid_equal (inferior_ptid, null_ptid))
    inf = find_inferior_ptid (inferior_ptid);
  else
    inf = NULL;

  if (inf != NULL
      && readbuf != NULL
      /* The dcache reads whole cache lines; that doesn't play well
	 with reading from a trace buffer, because reading outside of
	 the collected memory range fails.  */
      && get_traceframe_number () == -1
      && (region->attrib.cache
	  || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
	  || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
    {
      DCACHE *dcache = target_dcache_get_or_init ();

      return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
					 reg_len, xfered_len);
    }

  /* If none of those methods found the memory we wanted, fall back
     to a target partial transfer.  Normally a single call to
     to_xfer_partial is enough; if it doesn't recognize an object
     it will call the to_xfer_partial of the next target down.
     But for memory this won't do.  Memory is the only target
     object which can be read from more than one valid target.
     A core file, for instance, could have some of memory but
     delegate other bits to the target below it.  So, we must
     manually try all targets.  */

  res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
				 xfered_len);

  /* If we still haven't got anything, return the last error.  We
     give up.  */
  return res;
}

/* Perform a partial memory transfer.  For docs see target.h,
   to_xfer_partial.  */

static enum target_xfer_status
memory_xfer_partial (struct target_ops *ops, enum target_object object,
		     gdb_byte *readbuf, const gdb_byte *writebuf,
		     ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
{
  enum target_xfer_status res;

  /* Zero length requests are ok and require no work.  */
  if (len == 0)
    return TARGET_XFER_EOF;

  /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
     breakpoint insns, thus hiding out from higher layers whether
     there are software breakpoints inserted in the code stream.  */
  if (readbuf != NULL)
    {
      res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
				   xfered_len);

      if (res == TARGET_XFER_OK && !show_memory_breakpoints)
	breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
    }
  else
    {
      void *buf;
      struct cleanup *old_chain;

      /* A large write request is likely to be partially satisfied
	 by memory_xfer_partial_1.  We will continually malloc
	 and free a copy of the entire write request for breakpoint
	 shadow handling even though we only end up writing a small
	 subset of it.  Cap writes to 4KB to mitigate this.  */
      len = min (4096, len);

      buf = xmalloc (len);
      old_chain = make_cleanup (xfree, buf);
      memcpy (buf, writebuf, len);

      breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
      res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
				   xfered_len);

      do_cleanups (old_chain);
    }

  return res;
}

static void
restore_show_memory_breakpoints (void *arg)
{
  show_memory_breakpoints = (uintptr_t) arg;
}

struct cleanup *
make_show_memory_breakpoints_cleanup (int show)
{
  int current = show_memory_breakpoints;

  show_memory_breakpoints = show;
  return make_cleanup (restore_show_memory_breakpoints,
		       (void *) (uintptr_t) current);
}

/* For docs see target.h, to_xfer_partial.  */

enum target_xfer_status
target_xfer_partial (struct target_ops *ops,
		     enum target_object object, const char *annex,
		     gdb_byte *readbuf, const gdb_byte *writebuf,
		     ULONGEST offset, ULONGEST len,
		     ULONGEST *xfered_len)
{
  enum target_xfer_status retval;

  gdb_assert (ops->to_xfer_partial != NULL);

  /* Transfer is done when LEN is zero.  */
  if (len == 0)
    return TARGET_XFER_EOF;

  if (writebuf && !may_write_memory)
    error (_("Writing to memory is not allowed (addr %s, len %s)"),
	   core_addr_to_string_nz (offset), plongest (len));

  *xfered_len = 0;

  /* If this is a memory transfer, let the memory-specific code
     have a look at it instead.  Memory transfers are more
     complicated.  */
  if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
      || object == TARGET_OBJECT_CODE_MEMORY)
    retval = memory_xfer_partial (ops, object, readbuf,
				  writebuf, offset, len, xfered_len);
  else if (object == TARGET_OBJECT_RAW_MEMORY)
    {
      /* Skip/avoid accessing the target if the memory region
	 attributes block the access.  Check this here instead of in
	 raw_memory_xfer_partial as otherwise we'd end up checking
	 this twice in the case of the memory_xfer_partial path is
	 taken; once before checking the dcache, and another in the
	 tail call to raw_memory_xfer_partial.  */
      if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
				     NULL))
	return TARGET_XFER_E_IO;

      /* Request the normal memory object from other layers.  */
      retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
					xfered_len);
    }
  else
    retval = ops->to_xfer_partial (ops, object, annex, readbuf,
				   writebuf, offset, len, xfered_len);

  if (targetdebug)
    {
      const unsigned char *myaddr = NULL;

      fprintf_unfiltered (gdb_stdlog,
			  "%s:target_xfer_partial "
			  "(%d, %s, %s, %s, %s, %s) = %d, %s",
			  ops->to_shortname,
			  (int) object,
			  (annex ? annex : "(null)"),
			  host_address_to_string (readbuf),
			  host_address_to_string (writebuf),
			  core_addr_to_string_nz (offset),
			  pulongest (len), retval,
			  pulongest (*xfered_len));

      if (readbuf)
	myaddr = readbuf;
      if (writebuf)
	myaddr = writebuf;
      if (retval == TARGET_XFER_OK && myaddr != NULL)
	{
	  int i;

	  fputs_unfiltered (", bytes =", gdb_stdlog);
	  for (i = 0; i < *xfered_len; i++)
	    {
	      if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
		{
		  if (targetdebug < 2 && i > 0)
		    {
		      fprintf_unfiltered (gdb_stdlog, " ...");
		      break;
		    }
		  fprintf_unfiltered (gdb_stdlog, "\n");
		}

	      fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
	    }
	}

      fputc_unfiltered ('\n', gdb_stdlog);
    }

  /* Check implementations of to_xfer_partial update *XFERED_LEN
     properly.  Do assertion after printing debug messages, so that we
     can find more clues on assertion failure from debugging messages.  */
  if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
    gdb_assert (*xfered_len > 0);

  return retval;
}

/* Read LEN bytes of target memory at address MEMADDR, placing the
   results in GDB's memory at MYADDR.  Returns either 0 for success or
   TARGET_XFER_E_IO if any error occurs.

   If an error occurs, no guarantee is made about the contents of the data at
   MYADDR.  In particular, the caller should not depend upon partial reads
   filling the buffer with good data.  There is no way for the caller to know
   how much good data might have been transfered anyway.  Callers that can
   deal with partial reads should call target_read (which will retry until
   it makes no progress, and then return how much was transferred).  */

int
target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
{
  /* Dispatch to the topmost target, not the flattened current_target.
     Memory accesses check target->to_has_(all_)memory, and the
     flattened target doesn't inherit those.  */
  if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
		   myaddr, memaddr, len) == len)
    return 0;
  else
    return TARGET_XFER_E_IO;
}

/* See target/target.h.  */

int
target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
{
  gdb_byte buf[4];
  int r;

  r = target_read_memory (memaddr, buf, sizeof buf);
  if (r != 0)
    return r;
  *result = extract_unsigned_integer (buf, sizeof buf,
				      gdbarch_byte_order (target_gdbarch ()));
  return 0;
}

/* Like target_read_memory, but specify explicitly that this is a read
   from the target's raw memory.  That is, this read bypasses the
   dcache, breakpoint shadowing, etc.  */

int
target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
{
  /* See comment in target_read_memory about why the request starts at
     current_target.beneath.  */
  if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
		   myaddr, memaddr, len) == len)
    return 0;
  else
    return TARGET_XFER_E_IO;
}

/* Like target_read_memory, but specify explicitly that this is a read from
   the target's stack.  This may trigger different cache behavior.  */

int
target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
{
  /* See comment in target_read_memory about why the request starts at
     current_target.beneath.  */
  if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
		   myaddr, memaddr, len) == len)
    return 0;
  else
    return TARGET_XFER_E_IO;
}

/* Like target_read_memory, but specify explicitly that this is a read from
   the target's code.  This may trigger different cache behavior.  */

int
target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
{
  /* See comment in target_read_memory about why the request starts at
     current_target.beneath.  */
  if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
		   myaddr, memaddr, len) == len)
    return 0;
  else
    return TARGET_XFER_E_IO;
}

/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
   Returns either 0 for success or TARGET_XFER_E_IO if any
   error occurs.  If an error occurs, no guarantee is made about how
   much data got written.  Callers that can deal with partial writes
   should call target_write.  */

int
target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
{
  /* See comment in target_read_memory about why the request starts at
     current_target.beneath.  */
  if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
		    myaddr, memaddr, len) == len)
    return 0;
  else
    return TARGET_XFER_E_IO;
}

/* Write LEN bytes from MYADDR to target raw memory at address
   MEMADDR.  Returns either 0 for success or TARGET_XFER_E_IO
   if any error occurs.  If an error occurs, no guarantee is made
   about how much data got written.  Callers that can deal with
   partial writes should call target_write.  */

int
target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
{
  /* See comment in target_read_memory about why the request starts at
     current_target.beneath.  */
  if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
		    myaddr, memaddr, len) == len)
    return 0;
  else
    return TARGET_XFER_E_IO;
}

/* Fetch the target's memory map.  */

VEC(mem_region_s) *
target_memory_map (void)
{
  VEC(mem_region_s) *result;
  struct mem_region *last_one, *this_one;
  int ix;
  struct target_ops *t;

  result = current_target.to_memory_map (&current_target);
  if (result == NULL)
    return NULL;

  qsort (VEC_address (mem_region_s, result),
	 VEC_length (mem_region_s, result),
	 sizeof (struct mem_region), mem_region_cmp);

  /* Check that regions do not overlap.  Simultaneously assign
     a numbering for the "mem" commands to use to refer to
     each region.  */
  last_one = NULL;
  for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
    {
      this_one->number = ix;

      if (last_one && last_one->hi > this_one->lo)
	{
	  warning (_("Overlapping regions in memory map: ignoring"));
	  VEC_free (mem_region_s, result);
	  return NULL;
	}
      last_one = this_one;
    }

  return result;
}

void
target_flash_erase (ULONGEST address, LONGEST length)
{
  current_target.to_flash_erase (&current_target, address, length);
}

void
target_flash_done (void)
{
  current_target.to_flash_done (&current_target);
}

static void
show_trust_readonly (struct ui_file *file, int from_tty,
		     struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Mode for reading from readonly sections is %s.\n"),
		    value);
}

/* Target vector read/write partial wrapper functions.  */

static enum target_xfer_status
target_read_partial (struct target_ops *ops,
		     enum target_object object,
		     const char *annex, gdb_byte *buf,
		     ULONGEST offset, ULONGEST len,
		     ULONGEST *xfered_len)
{
  return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
			      xfered_len);
}

static enum target_xfer_status
target_write_partial (struct target_ops *ops,
		      enum target_object object,
		      const char *annex, const gdb_byte *buf,
		      ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
{
  return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
			      xfered_len);
}

/* Wrappers to perform the full transfer.  */

/* For docs on target_read see target.h.  */

LONGEST
target_read (struct target_ops *ops,
	     enum target_object object,
	     const char *annex, gdb_byte *buf,
	     ULONGEST offset, LONGEST len)
{
  LONGEST xfered_total = 0;
  int unit_size = 1;

  /* If we are reading from a memory object, find the length of an addressable
     unit for that architecture.  */
  if (object == TARGET_OBJECT_MEMORY
      || object == TARGET_OBJECT_STACK_MEMORY
      || object == TARGET_OBJECT_CODE_MEMORY
      || object == TARGET_OBJECT_RAW_MEMORY)
    unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());

  while (xfered_total < len)
    {
      ULONGEST xfered_partial;
      enum target_xfer_status status;

      status = target_read_partial (ops, object, annex,
				    buf + xfered_total * unit_size,
				    offset + xfered_total, len - xfered_total,
				    &xfered_partial);

      /* Call an observer, notifying them of the xfer progress?  */
      if (status == TARGET_XFER_EOF)
	return xfered_total;
      else if (status == TARGET_XFER_OK)
	{
	  xfered_total += xfered_partial;
	  QUIT;
	}
      else
	return TARGET_XFER_E_IO;

    }
  return len;
}

/* Assuming that the entire [begin, end) range of memory cannot be
   read, try to read whatever subrange is possible to read.

   The function returns, in RESULT, either zero or one memory block.
   If there's a readable subrange at the beginning, it is completely
   read and returned.  Any further readable subrange will not be read.
   Otherwise, if there's a readable subrange at the end, it will be
   completely read and returned.  Any readable subranges before it
   (obviously, not starting at the beginning), will be ignored.  In
   other cases -- either no readable subrange, or readable subrange(s)
   that is neither at the beginning, or end, nothing is returned.

   The purpose of this function is to handle a read across a boundary
   of accessible memory in a case when memory map is not available.
   The above restrictions are fine for this case, but will give
   incorrect results if the memory is 'patchy'.  However, supporting
   'patchy' memory would require trying to read every single byte,
   and it seems unacceptable solution.  Explicit memory map is
   recommended for this case -- and target_read_memory_robust will
   take care of reading multiple ranges then.  */

static void
read_whatever_is_readable (struct target_ops *ops,
			   const ULONGEST begin, const ULONGEST end,
			   int unit_size,
			   VEC(memory_read_result_s) **result)
{
  gdb_byte *buf = xmalloc (end - begin);
  ULONGEST current_begin = begin;
  ULONGEST current_end = end;
  int forward;
  memory_read_result_s r;
  ULONGEST xfered_len;

  /* If we previously failed to read 1 byte, nothing can be done here.  */
  if (end - begin <= 1)
    {
      xfree (buf);
      return;
    }

  /* Check that either first or the last byte is readable, and give up
     if not.  This heuristic is meant to permit reading accessible memory
     at the boundary of accessible region.  */
  if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
			   buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
    {
      forward = 1;
      ++current_begin;
    }
  else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
				buf + (end - begin) - 1, end - 1, 1,
				&xfered_len) == TARGET_XFER_OK)
    {
      forward = 0;
      --current_end;
    }
  else
    {
      xfree (buf);
      return;
    }

  /* Loop invariant is that the [current_begin, current_end) was previously
     found to be not readable as a whole.

     Note loop condition -- if the range has 1 byte, we can't divide the range
     so there's no point trying further.  */
  while (current_end - current_begin > 1)
    {
      ULONGEST first_half_begin, first_half_end;
      ULONGEST second_half_begin, second_half_end;
      LONGEST xfer;
      ULONGEST middle = current_begin + (current_end - current_begin) / 2;

      if (forward)
	{
	  first_half_begin = current_begin;
	  first_half_end = middle;
	  second_half_begin = middle;
	  second_half_end = current_end;
	}
      else
	{
	  first_half_begin = middle;
	  first_half_end = current_end;
	  second_half_begin = current_begin;
	  second_half_end = middle;
	}

      xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
			  buf + (first_half_begin - begin) * unit_size,
			  first_half_begin,
			  first_half_end - first_half_begin);

      if (xfer == first_half_end - first_half_begin)
	{
	  /* This half reads up fine.  So, the error must be in the
	     other half.  */
	  current_begin = second_half_begin;
	  current_end = second_half_end;
	}
      else
	{
	  /* This half is not readable.  Because we've tried one byte, we
	     know some part of this half if actually readable.  Go to the next
	     iteration to divide again and try to read.

	     We don't handle the other half, because this function only tries
	     to read a single readable subrange.  */
	  current_begin = first_half_begin;
	  current_end = first_half_end;
	}
    }

  if (forward)
    {
      /* The [begin, current_begin) range has been read.  */
      r.begin = begin;
      r.end = current_begin;
      r.data = buf;
    }
  else
    {
      /* The [current_end, end) range has been read.  */
      LONGEST region_len = end - current_end;

      r.data = xmalloc (region_len * unit_size);
      memcpy (r.data, buf + (current_end - begin) * unit_size,
	      region_len * unit_size);
      r.begin = current_end;
      r.end = end;
      xfree (buf);
    }
  VEC_safe_push(memory_read_result_s, (*result), &r);
}

void
free_memory_read_result_vector (void *x)
{
  VEC(memory_read_result_s) *v = x;
  memory_read_result_s *current;
  int ix;

  for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
    {
      xfree (current->data);
    }
  VEC_free (memory_read_result_s, v);
}

VEC(memory_read_result_s) *
read_memory_robust (struct target_ops *ops,
		    const ULONGEST offset, const LONGEST len)
{
  VEC(memory_read_result_s) *result = 0;
  int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());

  LONGEST xfered_total = 0;
  while (xfered_total < len)
    {
      struct mem_region *region = lookup_mem_region (offset + xfered_total);
      LONGEST region_len;

      /* If there is no explicit region, a fake one should be created.  */
      gdb_assert (region);

      if (region->hi == 0)
	region_len = len - xfered_total;
      else
	region_len = region->hi - offset;

      if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
	{
	  /* Cannot read this region.  Note that we can end up here only
	     if the region is explicitly marked inaccessible, or
	     'inaccessible-by-default' is in effect.  */
	  xfered_total += region_len;
	}
      else
	{
	  LONGEST to_read = min (len - xfered_total, region_len);
	  gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);

	  LONGEST xfered_partial =
	      target_read (ops, TARGET_OBJECT_MEMORY, NULL,
			   (gdb_byte *) buffer,
			   offset + xfered_total, to_read);
	  /* Call an observer, notifying them of the xfer progress?  */
	  if (xfered_partial <= 0)
	    {
	      /* Got an error reading full chunk.  See if maybe we can read
		 some subrange.  */
	      xfree (buffer);
	      read_whatever_is_readable (ops, offset + xfered_total, unit_size,
					 offset + xfered_total + to_read, &result);
	      xfered_total += to_read;
	    }
	  else
	    {
	      struct memory_read_result r;
	      r.data = buffer;
	      r.begin = offset + xfered_total;
	      r.end = r.begin + xfered_partial;
	      VEC_safe_push (memory_read_result_s, result, &r);
	      xfered_total += xfered_partial;
	    }
	  QUIT;
	}
    }
  return result;
}


/* An alternative to target_write with progress callbacks.  */

LONGEST
target_write_with_progress (struct target_ops *ops,
			    enum target_object object,
			    const char *annex, const gdb_byte *buf,
			    ULONGEST offset, LONGEST len,
			    void (*progress) (ULONGEST, void *), void *baton)
{
  LONGEST xfered_total = 0;
  int unit_size = 1;

  /* If we are writing to a memory object, find the length of an addressable
     unit for that architecture.  */
  if (object == TARGET_OBJECT_MEMORY
      || object == TARGET_OBJECT_STACK_MEMORY
      || object == TARGET_OBJECT_CODE_MEMORY
      || object == TARGET_OBJECT_RAW_MEMORY)
    unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());

  /* Give the progress callback a chance to set up.  */
  if (progress)
    (*progress) (0, baton);

  while (xfered_total < len)
    {
      ULONGEST xfered_partial;
      enum target_xfer_status status;

      status = target_write_partial (ops, object, annex,
				     buf + xfered_total * unit_size,
				     offset + xfered_total, len - xfered_total,
				     &xfered_partial);

      if (status != TARGET_XFER_OK)
	return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;

      if (progress)
	(*progress) (xfered_partial, baton);

      xfered_total += xfered_partial;
      QUIT;
    }
  return len;
}

/* For docs on target_write see target.h.  */

LONGEST
target_write (struct target_ops *ops,
	      enum target_object object,
	      const char *annex, const gdb_byte *buf,
	      ULONGEST offset, LONGEST len)
{
  return target_write_with_progress (ops, object, annex, buf, offset, len,
				     NULL, NULL);
}

/* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
   the size of the transferred data.  PADDING additional bytes are
   available in *BUF_P.  This is a helper function for
   target_read_alloc; see the declaration of that function for more
   information.  */

static LONGEST
target_read_alloc_1 (struct target_ops *ops, enum target_object object,
		     const char *annex, gdb_byte **buf_p, int padding)
{
  size_t buf_alloc, buf_pos;
  gdb_byte *buf;

  /* This function does not have a length parameter; it reads the
     entire OBJECT).  Also, it doesn't support objects fetched partly
     from one target and partly from another (in a different stratum,
     e.g. a core file and an executable).  Both reasons make it
     unsuitable for reading memory.  */
  gdb_assert (object != TARGET_OBJECT_MEMORY);

  /* Start by reading up to 4K at a time.  The target will throttle
     this number down if necessary.  */
  buf_alloc = 4096;
  buf = xmalloc (buf_alloc);
  buf_pos = 0;
  while (1)
    {
      ULONGEST xfered_len;
      enum target_xfer_status status;

      status = target_read_partial (ops, object, annex, &buf[buf_pos],
				    buf_pos, buf_alloc - buf_pos - padding,
				    &xfered_len);

      if (status == TARGET_XFER_EOF)
	{
	  /* Read all there was.  */
	  if (buf_pos == 0)
	    xfree (buf);
	  else
	    *buf_p = buf;
	  return buf_pos;
	}
      else if (status != TARGET_XFER_OK)
	{
	  /* An error occurred.  */
	  xfree (buf);
	  return TARGET_XFER_E_IO;
	}

      buf_pos += xfered_len;

      /* If the buffer is filling up, expand it.  */
      if (buf_alloc < buf_pos * 2)
	{
	  buf_alloc *= 2;
	  buf = xrealloc (buf, buf_alloc);
	}

      QUIT;
    }
}

/* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
   the size of the transferred data.  See the declaration in "target.h"
   function for more information about the return value.  */

LONGEST
target_read_alloc (struct target_ops *ops, enum target_object object,
		   const char *annex, gdb_byte **buf_p)
{
  return target_read_alloc_1 (ops, object, annex, buf_p, 0);
}

/* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
   returned as a string, allocated using xmalloc.  If an error occurs
   or the transfer is unsupported, NULL is returned.  Empty objects
   are returned as allocated but empty strings.  A warning is issued
   if the result contains any embedded NUL bytes.  */

char *
target_read_stralloc (struct target_ops *ops, enum target_object object,
		      const char *annex)
{
  gdb_byte *buffer;
  char *bufstr;
  LONGEST i, transferred;

  transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
  bufstr = (char *) buffer;

  if (transferred < 0)
    return NULL;

  if (transferred == 0)
    return xstrdup ("");

  bufstr[transferred] = 0;

  /* Check for embedded NUL bytes; but allow trailing NULs.  */
  for (i = strlen (bufstr); i < transferred; i++)
    if (bufstr[i] != 0)
      {
	warning (_("target object %d, annex %s, "
		   "contained unexpected null characters"),
		 (int) object, annex ? annex : "(none)");
	break;
      }

  return bufstr;
}

/* Memory transfer methods.  */

void
get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
		   LONGEST len)
{
  /* This method is used to read from an alternate, non-current
     target.  This read must bypass the overlay support (as symbols
     don't match this target), and GDB's internal cache (wrong cache
     for this target).  */
  if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
      != len)
    memory_error (TARGET_XFER_E_IO, addr);
}

ULONGEST
get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
			    int len, enum bfd_endian byte_order)
{
  gdb_byte buf[sizeof (ULONGEST)];

  gdb_assert (len <= sizeof (buf));
  get_target_memory (ops, addr, buf, len);
  return extract_unsigned_integer (buf, len, byte_order);
}

/* See target.h.  */

int
target_insert_breakpoint (struct gdbarch *gdbarch,
			  struct bp_target_info *bp_tgt)
{
  if (!may_insert_breakpoints)
    {
      warning (_("May not insert breakpoints"));
      return 1;
    }

  return current_target.to_insert_breakpoint (&current_target,
					      gdbarch, bp_tgt);
}

/* See target.h.  */

int
target_remove_breakpoint (struct gdbarch *gdbarch,
			  struct bp_target_info *bp_tgt)
{
  /* This is kind of a weird case to handle, but the permission might
     have been changed after breakpoints were inserted - in which case
     we should just take the user literally and assume that any
     breakpoints should be left in place.  */
  if (!may_insert_breakpoints)
    {
      warning (_("May not remove breakpoints"));
      return 1;
    }

  return current_target.to_remove_breakpoint (&current_target,
					      gdbarch, bp_tgt);
}

static void
target_info (char *args, int from_tty)
{
  struct target_ops *t;
  int has_all_mem = 0;

  if (symfile_objfile != NULL)
    printf_unfiltered (_("Symbols from \"%s\".\n"),
		       objfile_name (symfile_objfile));

  for (t = target_stack; t != NULL; t = t->beneath)
    {
      if (!(*t->to_has_memory) (t))
	continue;

      if ((int) (t->to_stratum) <= (int) dummy_stratum)
	continue;
      if (has_all_mem)
	printf_unfiltered (_("\tWhile running this, "
			     "GDB does not access memory from...\n"));
      printf_unfiltered ("%s:\n", t->to_longname);
      (t->to_files_info) (t);
      has_all_mem = (*t->to_has_all_memory) (t);
    }
}

/* This function is called before any new inferior is created, e.g.
   by running a program, attaching, or connecting to a target.
   It cleans up any state from previous invocations which might
   change between runs.  This is a subset of what target_preopen
   resets (things which might change between targets).  */

void
target_pre_inferior (int from_tty)
{
  /* Clear out solib state.  Otherwise the solib state of the previous
     inferior might have survived and is entirely wrong for the new
     target.  This has been observed on GNU/Linux using glibc 2.3.  How
     to reproduce:

     bash$ ./foo&
     [1] 4711
     bash$ ./foo&
     [1] 4712
     bash$ gdb ./foo
     [...]
     (gdb) attach 4711
     (gdb) detach
     (gdb) attach 4712
     Cannot access memory at address 0xdeadbeef
  */

  /* In some OSs, the shared library list is the same/global/shared
     across inferiors.  If code is shared between processes, so are
     memory regions and features.  */
  if (!gdbarch_has_global_solist (target_gdbarch ()))
    {
      no_shared_libraries (NULL, from_tty);

      invalidate_target_mem_regions ();

      target_clear_description ();
    }

  /* attach_flag may be set if the previous process associated with
     the inferior was attached to.  */
  current_inferior ()->attach_flag = 0;

  agent_capability_invalidate ();
}

/* Callback for iterate_over_inferiors.  Gets rid of the given
   inferior.  */

static int
dispose_inferior (struct inferior *inf, void *args)
{
  struct thread_info *thread;

  thread = any_thread_of_process (inf->pid);
  if (thread)
    {
      switch_to_thread (thread->ptid);

      /* Core inferiors actually should be detached, not killed.  */
      if (target_has_execution)
	target_kill ();
      else
	target_detach (NULL, 0);
    }

  return 0;
}

/* This is to be called by the open routine before it does
   anything.  */

void
target_preopen (int from_tty)
{
  dont_repeat ();

  if (have_inferiors ())
    {
      if (!from_tty
	  || !have_live_inferiors ()
	  || query (_("A program is being debugged already.  Kill it? ")))
	iterate_over_inferiors (dispose_inferior, NULL);
      else
	error (_("Program not killed."));
    }

  /* Calling target_kill may remove the target from the stack.  But if
     it doesn't (which seems like a win for UDI), remove it now.  */
  /* Leave the exec target, though.  The user may be switching from a
     live process to a core of the same program.  */
  pop_all_targets_above (file_stratum);

  target_pre_inferior (from_tty);
}

/* Detach a target after doing deferred register stores.  */

void
target_detach (const char *args, int from_tty)
{
  struct target_ops* t;
  
  if (gdbarch_has_global_breakpoints (target_gdbarch ()))
    /* Don't remove global breakpoints here.  They're removed on
       disconnection from the target.  */
    ;
  else
    /* If we're in breakpoints-always-inserted mode, have to remove
       them before detaching.  */
    remove_breakpoints_pid (ptid_get_pid (inferior_ptid));

  prepare_for_detach ();

  current_target.to_detach (&current_target, args, from_tty);
}

void
target_disconnect (const char *args, int from_tty)
{
  /* If we're in breakpoints-always-inserted mode or if breakpoints
     are global across processes, we have to remove them before
     disconnecting.  */
  remove_breakpoints ();

  current_target.to_disconnect (&current_target, args, from_tty);
}

ptid_t
target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
{
  return (current_target.to_wait) (&current_target, ptid, status, options);
}

/* See target.h.  */

ptid_t
default_target_wait (struct target_ops *ops,
		     ptid_t ptid, struct target_waitstatus *status,
		     int options)
{
  status->kind = TARGET_WAITKIND_IGNORE;
  return minus_one_ptid;
}

char *
target_pid_to_str (ptid_t ptid)
{
  return (*current_target.to_pid_to_str) (&current_target, ptid);
}

char *
target_thread_name (struct thread_info *info)
{
  return current_target.to_thread_name (&current_target, info);
}

void
target_resume (ptid_t ptid, int step, enum gdb_signal signal)
{
  struct target_ops *t;

  target_dcache_invalidate ();

  current_target.to_resume (&current_target, ptid, step, signal);

  registers_changed_ptid (ptid);
  /* We only set the internal executing state here.  The user/frontend
     running state is set at a higher level.  */
  set_executing (ptid, 1);
  clear_inline_frame_state (ptid);
}

void
target_pass_signals (int numsigs, unsigned char *pass_signals)
{
  (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
}

void
target_program_signals (int numsigs, unsigned char *program_signals)
{
  (*current_target.to_program_signals) (&current_target,
					numsigs, program_signals);
}

static int
default_follow_fork (struct target_ops *self, int follow_child,
		     int detach_fork)
{
  /* Some target returned a fork event, but did not know how to follow it.  */
  internal_error (__FILE__, __LINE__,
		  _("could not find a target to follow fork"));
}

/* Look through the list of possible targets for a target that can
   follow forks.  */

int
target_follow_fork (int follow_child, int detach_fork)
{
  return current_target.to_follow_fork (&current_target,
					follow_child, detach_fork);
}

/* Target wrapper for follow exec hook.  */

void
target_follow_exec (struct inferior *inf, char *execd_pathname)
{
  current_target.to_follow_exec (&current_target, inf, execd_pathname);
}

static void
default_mourn_inferior (struct target_ops *self)
{
  internal_error (__FILE__, __LINE__,
		  _("could not find a target to follow mourn inferior"));
}

void
target_mourn_inferior (void)
{
  current_target.to_mourn_inferior (&current_target);

  /* We no longer need to keep handles on any of the object files.
     Make sure to release them to avoid unnecessarily locking any
     of them while we're not actually debugging.  */
  bfd_cache_close_all ();
}

/* Look for a target which can describe architectural features, starting
   from TARGET.  If we find one, return its description.  */

const struct target_desc *
target_read_description (struct target_ops *target)
{
  return target->to_read_description (target);
}

/* This implements a basic search of memory, reading target memory and
   performing the search here (as opposed to performing the search in on the
   target side with, for example, gdbserver).  */

int
simple_search_memory (struct target_ops *ops,
		      CORE_ADDR start_addr, ULONGEST search_space_len,
		      const gdb_byte *pattern, ULONGEST pattern_len,
		      CORE_ADDR *found_addrp)
{
  /* NOTE: also defined in find.c testcase.  */
#define SEARCH_CHUNK_SIZE 16000
  const unsigned chunk_size = SEARCH_CHUNK_SIZE;
  /* Buffer to hold memory contents for searching.  */
  gdb_byte *search_buf;
  unsigned search_buf_size;
  struct cleanup *old_cleanups;

  search_buf_size = chunk_size + pattern_len - 1;

  /* No point in trying to allocate a buffer larger than the search space.  */
  if (search_space_len < search_buf_size)
    search_buf_size = search_space_len;

  search_buf = malloc (search_buf_size);
  if (search_buf == NULL)
    error (_("Unable to allocate memory to perform the search."));
  old_cleanups = make_cleanup (free_current_contents, &search_buf);

  /* Prime the search buffer.  */

  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
		   search_buf, start_addr, search_buf_size) != search_buf_size)
    {
      warning (_("Unable to access %s bytes of target "
		 "memory at %s, halting search."),
	       pulongest (search_buf_size), hex_string (start_addr));
      do_cleanups (old_cleanups);
      return -1;
    }

  /* Perform the search.

     The loop is kept simple by allocating [N + pattern-length - 1] bytes.
     When we've scanned N bytes we copy the trailing bytes to the start and
     read in another N bytes.  */

  while (search_space_len >= pattern_len)
    {
      gdb_byte *found_ptr;
      unsigned nr_search_bytes = min (search_space_len, search_buf_size);

      found_ptr = memmem (search_buf, nr_search_bytes,
			  pattern, pattern_len);

      if (found_ptr != NULL)
	{
	  CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);

	  *found_addrp = found_addr;
	  do_cleanups (old_cleanups);
	  return 1;
	}

      /* Not found in this chunk, skip to next chunk.  */

      /* Don't let search_space_len wrap here, it's unsigned.  */
      if (search_space_len >= chunk_size)
	search_space_len -= chunk_size;
      else
	search_space_len = 0;

      if (search_space_len >= pattern_len)
	{
	  unsigned keep_len = search_buf_size - chunk_size;
	  CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
	  int nr_to_read;

	  /* Copy the trailing part of the previous iteration to the front
	     of the buffer for the next iteration.  */
	  gdb_assert (keep_len == pattern_len - 1);
	  memcpy (search_buf, search_buf + chunk_size, keep_len);

	  nr_to_read = min (search_space_len - keep_len, chunk_size);

	  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
			   search_buf + keep_len, read_addr,
			   nr_to_read) != nr_to_read)
	    {
	      warning (_("Unable to access %s bytes of target "
			 "memory at %s, halting search."),
		       plongest (nr_to_read),
		       hex_string (read_addr));
	      do_cleanups (old_cleanups);
	      return -1;
	    }

	  start_addr += chunk_size;
	}
    }

  /* Not found.  */

  do_cleanups (old_cleanups);
  return 0;
}

/* Default implementation of memory-searching.  */

static int
default_search_memory (struct target_ops *self,
		       CORE_ADDR start_addr, ULONGEST search_space_len,
		       const gdb_byte *pattern, ULONGEST pattern_len,
		       CORE_ADDR *found_addrp)
{
  /* Start over from the top of the target stack.  */
  return simple_search_memory (current_target.beneath,
			       start_addr, search_space_len,
			       pattern, pattern_len, found_addrp);
}

/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
   sequence of bytes in PATTERN with length PATTERN_LEN.

   The result is 1 if found, 0 if not found, and -1 if there was an error
   requiring halting of the search (e.g. memory read error).
   If the pattern is found the address is recorded in FOUND_ADDRP.  */

int
target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
		      const gdb_byte *pattern, ULONGEST pattern_len,
		      CORE_ADDR *found_addrp)
{
  return current_target.to_search_memory (&current_target, start_addr,
					  search_space_len,
					  pattern, pattern_len, found_addrp);
}

/* Look through the currently pushed targets.  If none of them will
   be able to restart the currently running process, issue an error
   message.  */

void
target_require_runnable (void)
{
  struct target_ops *t;

  for (t = target_stack; t != NULL; t = t->beneath)
    {
      /* If this target knows how to create a new program, then
	 assume we will still be able to after killing the current
	 one.  Either killing and mourning will not pop T, or else
	 find_default_run_target will find it again.  */
      if (t->to_create_inferior != NULL)
	return;

      /* Do not worry about targets at certain strata that can not
	 create inferiors.  Assume they will be pushed again if
	 necessary, and continue to the process_stratum.  */
      if (t->to_stratum == thread_stratum
	  || t->to_stratum == record_stratum
	  || t->to_stratum == arch_stratum)
	continue;

      error (_("The \"%s\" target does not support \"run\".  "
	       "Try \"help target\" or \"continue\"."),
	     t->to_shortname);
    }

  /* This function is only called if the target is running.  In that
     case there should have been a process_stratum target and it
     should either know how to create inferiors, or not...  */
  internal_error (__FILE__, __LINE__, _("No targets found"));
}

/* Whether GDB is allowed to fall back to the default run target for
   "run", "attach", etc. when no target is connected yet.  */
static int auto_connect_native_target = 1;

static void
show_auto_connect_native_target (struct ui_file *file, int from_tty,
				 struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Whether GDB may automatically connect to the "
		      "native target is %s.\n"),
		    value);
}

/* Look through the list of possible targets for a target that can
   execute a run or attach command without any other data.  This is
   used to locate the default process stratum.

   If DO_MESG is not NULL, the result is always valid (error() is
   called for errors); else, return NULL on error.  */

static struct target_ops *
find_default_run_target (char *do_mesg)
{
  struct target_ops *runable = NULL;

  if (auto_connect_native_target)
    {
      struct target_ops *t;
      int count = 0;
      int i;

      for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
	{
	  if (t->to_can_run != delegate_can_run && target_can_run (t))
	    {
	      runable = t;
	      ++count;
	    }
	}

      if (count != 1)
	runable = NULL;
    }

  if (runable == NULL)
    {
      if (do_mesg)
	error (_("Don't know how to %s.  Try \"help target\"."), do_mesg);
      else
	return NULL;
    }

  return runable;
}

/* See target.h.  */

struct target_ops *
find_attach_target (void)
{
  struct target_ops *t;

  /* If a target on the current stack can attach, use it.  */
  for (t = current_target.beneath; t != NULL; t = t->beneath)
    {
      if (t->to_attach != NULL)
	break;
    }

  /* Otherwise, use the default run target for attaching.  */
  if (t == NULL)
    t = find_default_run_target ("attach");

  return t;
}

/* See target.h.  */

struct target_ops *
find_run_target (void)
{
  struct target_ops *t;

  /* If a target on the current stack can attach, use it.  */
  for (t = current_target.beneath; t != NULL; t = t->beneath)
    {
      if (t->to_create_inferior != NULL)
	break;
    }

  /* Otherwise, use the default run target.  */
  if (t == NULL)
    t = find_default_run_target ("run");

  return t;
}

/* Implement the "info proc" command.  */

int
target_info_proc (const char *args, enum info_proc_what what)
{
  struct target_ops *t;

  /* If we're already connected to something that can get us OS
     related data, use it.  Otherwise, try using the native
     target.  */
  if (current_target.to_stratum >= process_stratum)
    t = current_target.beneath;
  else
    t = find_default_run_target (NULL);

  for (; t != NULL; t = t->beneath)
    {
      if (t->to_info_proc != NULL)
	{
	  t->to_info_proc (t, args, what);

	  if (targetdebug)
	    fprintf_unfiltered (gdb_stdlog,
				"target_info_proc (\"%s\", %d)\n", args, what);

	  return 1;
	}
    }

  return 0;
}

static int
find_default_supports_disable_randomization (struct target_ops *self)
{
  struct target_ops *t;

  t = find_default_run_target (NULL);
  if (t && t->to_supports_disable_randomization)
    return (t->to_supports_disable_randomization) (t);
  return 0;
}

int
target_supports_disable_randomization (void)
{
  struct target_ops *t;

  for (t = &current_target; t != NULL; t = t->beneath)
    if (t->to_supports_disable_randomization)
      return t->to_supports_disable_randomization (t);

  return 0;
}

char *
target_get_osdata (const char *type)
{
  struct target_ops *t;

  /* If we're already connected to something that can get us OS
     related data, use it.  Otherwise, try using the native
     target.  */
  if (current_target.to_stratum >= process_stratum)
    t = current_target.beneath;
  else
    t = find_default_run_target ("get OS data");

  if (!t)
    return NULL;

  return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
}

static struct address_space *
default_thread_address_space (struct target_ops *self, ptid_t ptid)
{
  struct inferior *inf;

  /* Fall-back to the "main" address space of the inferior.  */
  inf = find_inferior_ptid (ptid);

  if (inf == NULL || inf->aspace == NULL)
    internal_error (__FILE__, __LINE__,
		    _("Can't determine the current "
		      "address space of thread %s\n"),
		    target_pid_to_str (ptid));

  return inf->aspace;
}

/* Determine the current address space of thread PTID.  */

struct address_space *
target_thread_address_space (ptid_t ptid)
{
  struct address_space *aspace;

  aspace = current_target.to_thread_address_space (&current_target, ptid);
  gdb_assert (aspace != NULL);

  return aspace;
}


/* Target file operations.  */

static struct target_ops *
default_fileio_target (void)
{
  /* If we're already connected to something that can perform
     file I/O, use it. Otherwise, try using the native target.  */
  if (current_target.to_stratum >= process_stratum)
    return current_target.beneath;
  else
    return find_default_run_target ("file I/O");
}

/* File handle for target file operations.  */

typedef struct
{
  /* The target on which this file is open.  */
  struct target_ops *t;

  /* The file descriptor on the target.  */
  int fd;
} fileio_fh_t;

DEF_VEC_O (fileio_fh_t);

/* Vector of currently open file handles.  The value returned by
   target_fileio_open and passed as the FD argument to other
   target_fileio_* functions is an index into this vector.  This
   vector's entries are never freed; instead, files are marked as
   closed, and the handle becomes available for reuse.  */
static VEC (fileio_fh_t) *fileio_fhandles;

/* Macro to check whether a fileio_fh_t represents a closed file.  */
#define is_closed_fileio_fh(fd) ((fd) < 0)

/* Index into fileio_fhandles of the lowest handle that might be
   closed.  This permits handle reuse without searching the whole
   list each time a new file is opened.  */
static int lowest_closed_fd;

/* Acquire a target fileio file descriptor.  */

static int
acquire_fileio_fd (struct target_ops *t, int fd)
{
  fileio_fh_t *fh, buf;

  gdb_assert (!is_closed_fileio_fh (fd));

  /* Search for closed handles to reuse.  */
  for (;
       VEC_iterate (fileio_fh_t, fileio_fhandles,
                    lowest_closed_fd, fh);
       lowest_closed_fd++)
    if (is_closed_fileio_fh (fh->fd))
      break;

  /* Push a new handle if no closed handles were found.  */
  if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
    fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);

  /* Fill in the handle.  */
  fh->t = t;
  fh->fd = fd;

  /* Return its index, and start the next lookup at
     the next index.  */
  return lowest_closed_fd++;
}

/* Release a target fileio file descriptor.  */

static void
release_fileio_fd (int fd, fileio_fh_t *fh)
{
  fh->fd = -1;
  lowest_closed_fd = min (lowest_closed_fd, fd);
}

/* Return a pointer to the fileio_fhandle_t corresponding to FD.  */

#define fileio_fd_to_fh(fd) \
  VEC_index (fileio_fh_t, fileio_fhandles, (fd))

/* Helper for target_fileio_open and
   target_fileio_open_warn_if_slow.  */

static int
target_fileio_open_1 (struct inferior *inf, const char *filename,
		      int flags, int mode, int warn_if_slow,
		      int *target_errno)
{
  struct target_ops *t;

  for (t = default_fileio_target (); t != NULL; t = t->beneath)
    {
      if (t->to_fileio_open != NULL)
	{
	  int fd = t->to_fileio_open (t, inf, filename, flags, mode,
				      warn_if_slow, target_errno);

	  if (fd < 0)
	    fd = -1;
	  else
	    fd = acquire_fileio_fd (t, fd);

	  if (targetdebug)
	    fprintf_unfiltered (gdb_stdlog,
				"target_fileio_open (%d,%s,0x%x,0%o,%d)"
				" = %d (%d)\n",
				inf == NULL ? 0 : inf->num,
				filename, flags, mode,
				warn_if_slow, fd,
				fd != -1 ? 0 : *target_errno);
	  return fd;
	}
    }

  *target_errno = FILEIO_ENOSYS;
  return -1;
}

/* See target.h.  */

int
target_fileio_open (struct inferior *inf, const char *filename,
		    int flags, int mode, int *target_errno)
{
  return target_fileio_open_1 (inf, filename, flags, mode, 0,
			       target_errno);
}

/* See target.h.  */

int
target_fileio_open_warn_if_slow (struct inferior *inf,
				 const char *filename,
				 int flags, int mode, int *target_errno)
{
  return target_fileio_open_1 (inf, filename, flags, mode, 1,
			       target_errno);
}

/* See target.h.  */

int
target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
		      ULONGEST offset, int *target_errno)
{
  fileio_fh_t *fh = fileio_fd_to_fh (fd);
  int ret = -1;

  if (is_closed_fileio_fh (fh->fd))
    *target_errno = EBADF;
  else
    ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
				   len, offset, target_errno);

  if (targetdebug)
    fprintf_unfiltered (gdb_stdlog,
			"target_fileio_pwrite (%d,...,%d,%s) "
			"= %d (%d)\n",
			fd, len, pulongest (offset),
			ret, ret != -1 ? 0 : *target_errno);
  return ret;
}

/* See target.h.  */

int
target_fileio_pread (int fd, gdb_byte *read_buf, int len,
		     ULONGEST offset, int *target_errno)
{
  fileio_fh_t *fh = fileio_fd_to_fh (fd);
  int ret = -1;

  if (is_closed_fileio_fh (fh->fd))
    *target_errno = EBADF;
  else
    ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
				  len, offset, target_errno);

  if (targetdebug)
    fprintf_unfiltered (gdb_stdlog,
			"target_fileio_pread (%d,...,%d,%s) "
			"= %d (%d)\n",
			fd, len, pulongest (offset),
			ret, ret != -1 ? 0 : *target_errno);
  return ret;
}

/* See target.h.  */

int
target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
{
  fileio_fh_t *fh = fileio_fd_to_fh (fd);
  int ret = -1;

  if (is_closed_fileio_fh (fh->fd))
    *target_errno = EBADF;
  else
    ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);

  if (targetdebug)
    fprintf_unfiltered (gdb_stdlog,
			"target_fileio_fstat (%d) = %d (%d)\n",
			fd, ret, ret != -1 ? 0 : *target_errno);
  return ret;
}

/* See target.h.  */

int
target_fileio_close (int fd, int *target_errno)
{
  fileio_fh_t *fh = fileio_fd_to_fh (fd);
  int ret = -1;

  if (is_closed_fileio_fh (fh->fd))
    *target_errno = EBADF;
  else
    {
      ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
      release_fileio_fd (fd, fh);
    }

  if (targetdebug)
    fprintf_unfiltered (gdb_stdlog,
			"target_fileio_close (%d) = %d (%d)\n",
			fd, ret, ret != -1 ? 0 : *target_errno);
  return ret;
}

/* See target.h.  */

int
target_fileio_unlink (struct inferior *inf, const char *filename,
		      int *target_errno)
{
  struct target_ops *t;

  for (t = default_fileio_target (); t != NULL; t = t->beneath)
    {
      if (t->to_fileio_unlink != NULL)
	{
	  int ret = t->to_fileio_unlink (t, inf, filename,
					 target_errno);

	  if (targetdebug)
	    fprintf_unfiltered (gdb_stdlog,
				"target_fileio_unlink (%d,%s)"
				" = %d (%d)\n",
				inf == NULL ? 0 : inf->num, filename,
				ret, ret != -1 ? 0 : *target_errno);
	  return ret;
	}
    }

  *target_errno = FILEIO_ENOSYS;
  return -1;
}

/* See target.h.  */

char *
target_fileio_readlink (struct inferior *inf, const char *filename,
			int *target_errno)
{
  struct target_ops *t;

  for (t = default_fileio_target (); t != NULL; t = t->beneath)
    {
      if (t->to_fileio_readlink != NULL)
	{
	  char *ret = t->to_fileio_readlink (t, inf, filename,
					     target_errno);

	  if (targetdebug)
	    fprintf_unfiltered (gdb_stdlog,
				"target_fileio_readlink (%d,%s)"
				" = %s (%d)\n",
				inf == NULL ? 0 : inf->num,
				filename, ret? ret : "(nil)",
				ret? 0 : *target_errno);
	  return ret;
	}
    }

  *target_errno = FILEIO_ENOSYS;
  return NULL;
}

static void
target_fileio_close_cleanup (void *opaque)
{
  int fd = *(int *) opaque;
  int target_errno;

  target_fileio_close (fd, &target_errno);
}

/* Read target file FILENAME, in the filesystem as seen by INF.  If
   INF is NULL, use the filesystem seen by the debugger (GDB or, for
   remote targets, the remote stub).  Store the result in *BUF_P and
   return the size of the transferred data.  PADDING additional bytes
   are available in *BUF_P.  This is a helper function for
   target_fileio_read_alloc; see the declaration of that function for
   more information.  */

static LONGEST
target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
			    gdb_byte **buf_p, int padding)
{
  struct cleanup *close_cleanup;
  size_t buf_alloc, buf_pos;
  gdb_byte *buf;
  LONGEST n;
  int fd;
  int target_errno;

  fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
			   &target_errno);
  if (fd == -1)
    return -1;

  close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);

  /* Start by reading up to 4K at a time.  The target will throttle
     this number down if necessary.  */
  buf_alloc = 4096;
  buf = xmalloc (buf_alloc);
  buf_pos = 0;
  while (1)
    {
      n = target_fileio_pread (fd, &buf[buf_pos],
			       buf_alloc - buf_pos - padding, buf_pos,
			       &target_errno);
      if (n < 0)
	{
	  /* An error occurred.  */
	  do_cleanups (close_cleanup);
	  xfree (buf);
	  return -1;
	}
      else if (n == 0)
	{
	  /* Read all there was.  */
	  do_cleanups (close_cleanup);
	  if (buf_pos == 0)
	    xfree (buf);
	  else
	    *buf_p = buf;
	  return buf_pos;
	}

      buf_pos += n;

      /* If the buffer is filling up, expand it.  */
      if (buf_alloc < buf_pos * 2)
	{
	  buf_alloc *= 2;
	  buf = xrealloc (buf, buf_alloc);
	}

      QUIT;
    }
}

/* See target.h.  */

LONGEST
target_fileio_read_alloc (struct inferior *inf, const char *filename,
			  gdb_byte **buf_p)
{
  return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
}

/* See target.h.  */

char *
target_fileio_read_stralloc (struct inferior *inf, const char *filename)
{
  gdb_byte *buffer;
  char *bufstr;
  LONGEST i, transferred;

  transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
  bufstr = (char *) buffer;

  if (transferred < 0)
    return NULL;

  if (transferred == 0)
    return xstrdup ("");

  bufstr[transferred] = 0;

  /* Check for embedded NUL bytes; but allow trailing NULs.  */
  for (i = strlen (bufstr); i < transferred; i++)
    if (bufstr[i] != 0)
      {
	warning (_("target file %s "
		   "contained unexpected null characters"),
		 filename);
	break;
      }

  return bufstr;
}


static int
default_region_ok_for_hw_watchpoint (struct target_ops *self,
				     CORE_ADDR addr, int len)
{
  return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
}

static int
default_watchpoint_addr_within_range (struct target_ops *target,
				      CORE_ADDR addr,
				      CORE_ADDR start, int length)
{
  return addr >= start && addr < start + length;
}

static struct gdbarch *
default_thread_architecture (struct target_ops *ops, ptid_t ptid)
{
  return target_gdbarch ();
}

static int
return_zero (struct target_ops *ignore)
{
  return 0;
}

static int
return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
{
  return 0;
}

/*
 * Find the next target down the stack from the specified target.
 */

struct target_ops *
find_target_beneath (struct target_ops *t)
{
  return t->beneath;
}

/* See target.h.  */

struct target_ops *
find_target_at (enum strata stratum)
{
  struct target_ops *t;

  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_stratum == stratum)
      return t;

  return NULL;
}


/* The inferior process has died.  Long live the inferior!  */

void
generic_mourn_inferior (void)
{
  ptid_t ptid;

  ptid = inferior_ptid;
  inferior_ptid = null_ptid;

  /* Mark breakpoints uninserted in case something tries to delete a
     breakpoint while we delete the inferior's threads (which would
     fail, since the inferior is long gone).  */
  mark_breakpoints_out ();

  if (!ptid_equal (ptid, null_ptid))
    {
      int pid = ptid_get_pid (ptid);
      exit_inferior (pid);
    }

  /* Note this wipes step-resume breakpoints, so needs to be done
     after exit_inferior, which ends up referencing the step-resume
     breakpoints through clear_thread_inferior_resources.  */
  breakpoint_init_inferior (inf_exited);

  registers_changed ();

  reopen_exec_file ();
  reinit_frame_cache ();

  if (deprecated_detach_hook)
    deprecated_detach_hook ();
}

/* Convert a normal process ID to a string.  Returns the string in a
   static buffer.  */

char *
normal_pid_to_str (ptid_t ptid)
{
  static char buf[32];

  xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
  return buf;
}

static char *
default_pid_to_str (struct target_ops *ops, ptid_t ptid)
{
  return normal_pid_to_str (ptid);
}

/* Error-catcher for target_find_memory_regions.  */
static int
dummy_find_memory_regions (struct target_ops *self,
			   find_memory_region_ftype ignore1, void *ignore2)
{
  error (_("Command not implemented for this target."));
  return 0;
}

/* Error-catcher for target_make_corefile_notes.  */
static char *
dummy_make_corefile_notes (struct target_ops *self,
			   bfd *ignore1, int *ignore2)
{
  error (_("Command not implemented for this target."));
  return NULL;
}

/* Set up the handful of non-empty slots needed by the dummy target
   vector.  */

static void
init_dummy_target (void)
{
  dummy_target.to_shortname = "None";
  dummy_target.to_longname = "None";
  dummy_target.to_doc = "";
  dummy_target.to_supports_disable_randomization
    = find_default_supports_disable_randomization;
  dummy_target.to_stratum = dummy_stratum;
  dummy_target.to_has_all_memory = return_zero;
  dummy_target.to_has_memory = return_zero;
  dummy_target.to_has_stack = return_zero;
  dummy_target.to_has_registers = return_zero;
  dummy_target.to_has_execution = return_zero_has_execution;
  dummy_target.to_magic = OPS_MAGIC;

  install_dummy_methods (&dummy_target);
}


void
target_close (struct target_ops *targ)
{
  gdb_assert (!target_is_pushed (targ));

  if (targ->to_xclose != NULL)
    targ->to_xclose (targ);
  else if (targ->to_close != NULL)
    targ->to_close (targ);

  if (targetdebug)
    fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
}

int
target_thread_alive (ptid_t ptid)
{
  return current_target.to_thread_alive (&current_target, ptid);
}

void
target_update_thread_list (void)
{
  current_target.to_update_thread_list (&current_target);
}

void
target_stop (ptid_t ptid)
{
  if (!may_stop)
    {
      warning (_("May not interrupt or stop the target, ignoring attempt"));
      return;
    }

  (*current_target.to_stop) (&current_target, ptid);
}

void
target_interrupt (ptid_t ptid)
{
  if (!may_stop)
    {
      warning (_("May not interrupt or stop the target, ignoring attempt"));
      return;
    }

  (*current_target.to_interrupt) (&current_target, ptid);
}

/* See target.h.  */

void
target_check_pending_interrupt (void)
{
  (*current_target.to_check_pending_interrupt) (&current_target);
}

/* See target/target.h.  */

void
target_stop_and_wait (ptid_t ptid)
{
  struct target_waitstatus status;
  int was_non_stop = non_stop;

  non_stop = 1;
  target_stop (ptid);

  memset (&status, 0, sizeof (status));
  target_wait (ptid, &status, 0);

  non_stop = was_non_stop;
}

/* See target/target.h.  */

void
target_continue_no_signal (ptid_t ptid)
{
  target_resume (ptid, 0, GDB_SIGNAL_0);
}

/* Concatenate ELEM to LIST, a comma separate list, and return the
   result.  The LIST incoming argument is released.  */

static char *
str_comma_list_concat_elem (char *list, const char *elem)
{
  if (list == NULL)
    return xstrdup (elem);
  else
    return reconcat (list, list, ", ", elem, (char *) NULL);
}

/* Helper for target_options_to_string.  If OPT is present in
   TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
   Returns the new resulting string.  OPT is removed from
   TARGET_OPTIONS.  */

static char *
do_option (int *target_options, char *ret,
	   int opt, char *opt_str)
{
  if ((*target_options & opt) != 0)
    {
      ret = str_comma_list_concat_elem (ret, opt_str);
      *target_options &= ~opt;
    }

  return ret;
}

char *
target_options_to_string (int target_options)
{
  char *ret = NULL;

#define DO_TARG_OPTION(OPT) \
  ret = do_option (&target_options, ret, OPT, #OPT)

  DO_TARG_OPTION (TARGET_WNOHANG);

  if (target_options != 0)
    ret = str_comma_list_concat_elem (ret, "unknown???");

  if (ret == NULL)
    ret = xstrdup ("");
  return ret;
}

static void
debug_print_register (const char * func,
		      struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);

  fprintf_unfiltered (gdb_stdlog, "%s ", func);
  if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
      && gdbarch_register_name (gdbarch, regno) != NULL
      && gdbarch_register_name (gdbarch, regno)[0] != '\0')
    fprintf_unfiltered (gdb_stdlog, "(%s)",
			gdbarch_register_name (gdbarch, regno));
  else
    fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
  if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
    {
      enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
      int i, size = register_size (gdbarch, regno);
      gdb_byte buf[MAX_REGISTER_SIZE];

      regcache_raw_collect (regcache, regno, buf);
      fprintf_unfiltered (gdb_stdlog, " = ");
      for (i = 0; i < size; i++)
	{
	  fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
	}
      if (size <= sizeof (LONGEST))
	{
	  ULONGEST val = extract_unsigned_integer (buf, size, byte_order);

	  fprintf_unfiltered (gdb_stdlog, " %s %s",
			      core_addr_to_string_nz (val), plongest (val));
	}
    }
  fprintf_unfiltered (gdb_stdlog, "\n");
}

void
target_fetch_registers (struct regcache *regcache, int regno)
{
  current_target.to_fetch_registers (&current_target, regcache, regno);
  if (targetdebug)
    debug_print_register ("target_fetch_registers", regcache, regno);
}

void
target_store_registers (struct regcache *regcache, int regno)
{
  struct target_ops *t;

  if (!may_write_registers)
    error (_("Writing to registers is not allowed (regno %d)"), regno);

  current_target.to_store_registers (&current_target, regcache, regno);
  if (targetdebug)
    {
      debug_print_register ("target_store_registers", regcache, regno);
    }
}

int
target_core_of_thread (ptid_t ptid)
{
  return current_target.to_core_of_thread (&current_target, ptid);
}

int
simple_verify_memory (struct target_ops *ops,
		      const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
{
  LONGEST total_xfered = 0;

  while (total_xfered < size)
    {
      ULONGEST xfered_len;
      enum target_xfer_status status;
      gdb_byte buf[1024];
      ULONGEST howmuch = min (sizeof (buf), size - total_xfered);

      status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
				    buf, NULL, lma + total_xfered, howmuch,
				    &xfered_len);
      if (status == TARGET_XFER_OK
	  && memcmp (data + total_xfered, buf, xfered_len) == 0)
	{
	  total_xfered += xfered_len;
	  QUIT;
	}
      else
	return 0;
    }
  return 1;
}

/* Default implementation of memory verification.  */

static int
default_verify_memory (struct target_ops *self,
		       const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
{
  /* Start over from the top of the target stack.  */
  return simple_verify_memory (current_target.beneath,
			       data, memaddr, size);
}

int
target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
{
  return current_target.to_verify_memory (&current_target,
					  data, memaddr, size);
}

/* The documentation for this function is in its prototype declaration in
   target.h.  */

int
target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
{
  return current_target.to_insert_mask_watchpoint (&current_target,
						   addr, mask, rw);
}

/* The documentation for this function is in its prototype declaration in
   target.h.  */

int
target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
{
  return current_target.to_remove_mask_watchpoint (&current_target,
						   addr, mask, rw);
}

/* The documentation for this function is in its prototype declaration
   in target.h.  */

int
target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
{
  return current_target.to_masked_watch_num_registers (&current_target,
						       addr, mask);
}

/* The documentation for this function is in its prototype declaration
   in target.h.  */

int
target_ranged_break_num_registers (void)
{
  return current_target.to_ranged_break_num_registers (&current_target);
}

/* See target.h.  */

int
target_supports_btrace (enum btrace_format format)
{
  return current_target.to_supports_btrace (&current_target, format);
}

/* See target.h.  */

struct btrace_target_info *
target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
{
  return current_target.to_enable_btrace (&current_target, ptid, conf);
}

/* See target.h.  */

void
target_disable_btrace (struct btrace_target_info *btinfo)
{
  current_target.to_disable_btrace (&current_target, btinfo);
}

/* See target.h.  */

void
target_teardown_btrace (struct btrace_target_info *btinfo)
{
  current_target.to_teardown_btrace (&current_target, btinfo);
}

/* See target.h.  */

enum btrace_error
target_read_btrace (struct btrace_data *btrace,
		    struct btrace_target_info *btinfo,
		    enum btrace_read_type type)
{
  return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
}

/* See target.h.  */

const struct btrace_config *
target_btrace_conf (const struct btrace_target_info *btinfo)
{
  return current_target.to_btrace_conf (&current_target, btinfo);
}

/* See target.h.  */

void
target_stop_recording (void)
{
  current_target.to_stop_recording (&current_target);
}

/* See target.h.  */

void
target_save_record (const char *filename)
{
  current_target.to_save_record (&current_target, filename);
}

/* See target.h.  */

int
target_supports_delete_record (void)
{
  struct target_ops *t;

  for (t = current_target.beneath; t != NULL; t = t->beneath)
    if (t->to_delete_record != delegate_delete_record
	&& t->to_delete_record != tdefault_delete_record)
      return 1;

  return 0;
}

/* See target.h.  */

void
target_delete_record (void)
{
  current_target.to_delete_record (&current_target);
}

/* See target.h.  */

int
target_record_is_replaying (ptid_t ptid)
{
  return current_target.to_record_is_replaying (&current_target, ptid);
}

/* See target.h.  */

int
target_record_will_replay (ptid_t ptid, int dir)
{
  return current_target.to_record_will_replay (&current_target, ptid, dir);
}

/* See target.h.  */

void
target_record_stop_replaying (void)
{
  current_target.to_record_stop_replaying (&current_target);
}

/* See target.h.  */

void
target_goto_record_begin (void)
{
  current_target.to_goto_record_begin (&current_target);
}

/* See target.h.  */

void
target_goto_record_end (void)
{
  current_target.to_goto_record_end (&current_target);
}

/* See target.h.  */

void
target_goto_record (ULONGEST insn)
{
  current_target.to_goto_record (&current_target, insn);
}

/* See target.h.  */

void
target_insn_history (int size, int flags)
{
  current_target.to_insn_history (&current_target, size, flags);
}

/* See target.h.  */

void
target_insn_history_from (ULONGEST from, int size, int flags)
{
  current_target.to_insn_history_from (&current_target, from, size, flags);
}

/* See target.h.  */

void
target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
{
  current_target.to_insn_history_range (&current_target, begin, end, flags);
}

/* See target.h.  */

void
target_call_history (int size, int flags)
{
  current_target.to_call_history (&current_target, size, flags);
}

/* See target.h.  */

void
target_call_history_from (ULONGEST begin, int size, int flags)
{
  current_target.to_call_history_from (&current_target, begin, size, flags);
}

/* See target.h.  */

void
target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
{
  current_target.to_call_history_range (&current_target, begin, end, flags);
}

/* See target.h.  */

const struct frame_unwind *
target_get_unwinder (void)
{
  return current_target.to_get_unwinder (&current_target);
}

/* See target.h.  */

const struct frame_unwind *
target_get_tailcall_unwinder (void)
{
  return current_target.to_get_tailcall_unwinder (&current_target);
}

/* See target.h.  */

void
target_prepare_to_generate_core (void)
{
  current_target.to_prepare_to_generate_core (&current_target);
}

/* See target.h.  */

void
target_done_generating_core (void)
{
  current_target.to_done_generating_core (&current_target);
}

static void
setup_target_debug (void)
{
  memcpy (&debug_target, &current_target, sizeof debug_target);

  init_debug_target (&current_target);
}


static char targ_desc[] =
"Names of targets and files being debugged.\nShows the entire \
stack of targets currently in use (including the exec-file,\n\
core-file, and process, if any), as well as the symbol file name.";

static void
default_rcmd (struct target_ops *self, const char *command,
	      struct ui_file *output)
{
  error (_("\"monitor\" command not supported by this target."));
}

static void
do_monitor_command (char *cmd,
		 int from_tty)
{
  target_rcmd (cmd, gdb_stdtarg);
}

/* Print the name of each layers of our target stack.  */

static void
maintenance_print_target_stack (char *cmd, int from_tty)
{
  struct target_ops *t;

  printf_filtered (_("The current target stack is:\n"));

  for (t = target_stack; t != NULL; t = t->beneath)
    {
      printf_filtered ("  - %s (%s)\n", t->to_shortname, t->to_longname);
    }
}

/* See target.h.  */

void
target_async (int enable)
{
  infrun_async (enable);
  current_target.to_async (&current_target, enable);
}

/* Controls if targets can report that they can/are async.  This is
   just for maintainers to use when debugging gdb.  */
int target_async_permitted = 1;

/* The set command writes to this variable.  If the inferior is
   executing, target_async_permitted is *not* updated.  */
static int target_async_permitted_1 = 1;

static void
maint_set_target_async_command (char *args, int from_tty,
				struct cmd_list_element *c)
{
  if (have_live_inferiors ())
    {
      target_async_permitted_1 = target_async_permitted;
      error (_("Cannot change this setting while the inferior is running."));
    }

  target_async_permitted = target_async_permitted_1;
}

static void
maint_show_target_async_command (struct ui_file *file, int from_tty,
				 struct cmd_list_element *c,
				 const char *value)
{
  fprintf_filtered (file,
		    _("Controlling the inferior in "
		      "asynchronous mode is %s.\n"), value);
}

/* Return true if the target operates in non-stop mode even with "set
   non-stop off".  */

static int
target_always_non_stop_p (void)
{
  return current_target.to_always_non_stop_p (&current_target);
}

/* See target.h.  */

int
target_is_non_stop_p (void)
{
  return (non_stop
	  || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
	  || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
	      && target_always_non_stop_p ()));
}

/* Controls if targets can report that they always run in non-stop
   mode.  This is just for maintainers to use when debugging gdb.  */
enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;

/* The set command writes to this variable.  If the inferior is
   executing, target_non_stop_enabled is *not* updated.  */
static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;

/* Implementation of "maint set target-non-stop".  */

static void
maint_set_target_non_stop_command (char *args, int from_tty,
				   struct cmd_list_element *c)
{
  if (have_live_inferiors ())
    {
      target_non_stop_enabled_1 = target_non_stop_enabled;
      error (_("Cannot change this setting while the inferior is running."));
    }

  target_non_stop_enabled = target_non_stop_enabled_1;
}

/* Implementation of "maint show target-non-stop".  */

static void
maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
				    struct cmd_list_element *c,
				    const char *value)
{
  if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
    fprintf_filtered (file,
		      _("Whether the target is always in non-stop mode "
			"is %s (currently %s).\n"), value,
		      target_always_non_stop_p () ? "on" : "off");
  else
    fprintf_filtered (file,
		      _("Whether the target is always in non-stop mode "
			"is %s.\n"), value);
}

/* Temporary copies of permission settings.  */

static int may_write_registers_1 = 1;
static int may_write_memory_1 = 1;
static int may_insert_breakpoints_1 = 1;
static int may_insert_tracepoints_1 = 1;
static int may_insert_fast_tracepoints_1 = 1;
static int may_stop_1 = 1;

/* Make the user-set values match the real values again.  */

void
update_target_permissions (void)
{
  may_write_registers_1 = may_write_registers;
  may_write_memory_1 = may_write_memory;
  may_insert_breakpoints_1 = may_insert_breakpoints;
  may_insert_tracepoints_1 = may_insert_tracepoints;
  may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
  may_stop_1 = may_stop;
}

/* The one function handles (most of) the permission flags in the same
   way.  */

static void
set_target_permissions (char *args, int from_tty,
			struct cmd_list_element *c)
{
  if (target_has_execution)
    {
      update_target_permissions ();
      error (_("Cannot change this setting while the inferior is running."));
    }

  /* Make the real values match the user-changed values.  */
  may_write_registers = may_write_registers_1;
  may_insert_breakpoints = may_insert_breakpoints_1;
  may_insert_tracepoints = may_insert_tracepoints_1;
  may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
  may_stop = may_stop_1;
  update_observer_mode ();
}

/* Set memory write permission independently of observer mode.  */

static void
set_write_memory_permission (char *args, int from_tty,
			struct cmd_list_element *c)
{
  /* Make the real values match the user-changed values.  */
  may_write_memory = may_write_memory_1;
  update_observer_mode ();
}


void
initialize_targets (void)
{
  init_dummy_target ();
  push_target (&dummy_target);

  add_info ("target", target_info, targ_desc);
  add_info ("files", target_info, targ_desc);

  add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
Set target debugging."), _("\
Show target debugging."), _("\
When non-zero, target debugging is enabled.  Higher numbers are more\n\
verbose."),
			     set_targetdebug,
			     show_targetdebug,
			     &setdebuglist, &showdebuglist);

  add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
			   &trust_readonly, _("\
Set mode for reading from readonly sections."), _("\
Show mode for reading from readonly sections."), _("\
When this mode is on, memory reads from readonly sections (such as .text)\n\
will be read from the object file instead of from the target.  This will\n\
result in significant performance improvement for remote targets."),
			   NULL,
			   show_trust_readonly,
			   &setlist, &showlist);

  add_com ("monitor", class_obscure, do_monitor_command,
	   _("Send a command to the remote monitor (remote targets only)."));

  add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
           _("Print the name of each layer of the internal target stack."),
           &maintenanceprintlist);

  add_setshow_boolean_cmd ("target-async", no_class,
			   &target_async_permitted_1, _("\
Set whether gdb controls the inferior in asynchronous mode."), _("\
Show whether gdb controls the inferior in asynchronous mode."), _("\
Tells gdb whether to control the inferior in asynchronous mode."),
			   maint_set_target_async_command,
			   maint_show_target_async_command,
			   &maintenance_set_cmdlist,
			   &maintenance_show_cmdlist);

  add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
				&target_non_stop_enabled_1, _("\
Set whether gdb always controls the inferior in non-stop mode."), _("\
Show whether gdb always controls the inferior in non-stop mode."), _("\
Tells gdb whether to control the inferior in non-stop mode."),
			   maint_set_target_non_stop_command,
			   maint_show_target_non_stop_command,
			   &maintenance_set_cmdlist,
			   &maintenance_show_cmdlist);

  add_setshow_boolean_cmd ("may-write-registers", class_support,
			   &may_write_registers_1, _("\
Set permission to write into registers."), _("\
Show permission to write into registers."), _("\
When this permission is on, GDB may write into the target's registers.\n\
Otherwise, any sort of write attempt will result in an error."),
			   set_target_permissions, NULL,
			   &setlist, &showlist);

  add_setshow_boolean_cmd ("may-write-memory", class_support,
			   &may_write_memory_1, _("\
Set permission to write into target memory."), _("\
Show permission to write into target memory."), _("\
When this permission is on, GDB may write into the target's memory.\n\
Otherwise, any sort of write attempt will result in an error."),
			   set_write_memory_permission, NULL,
			   &setlist, &showlist);

  add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
			   &may_insert_breakpoints_1, _("\
Set permission to insert breakpoints in the target."), _("\
Show permission to insert breakpoints in the target."), _("\
When this permission is on, GDB may insert breakpoints in the program.\n\
Otherwise, any sort of insertion attempt will result in an error."),
			   set_target_permissions, NULL,
			   &setlist, &showlist);

  add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
			   &may_insert_tracepoints_1, _("\
Set permission to insert tracepoints in the target."), _("\
Show permission to insert tracepoints in the target."), _("\
When this permission is on, GDB may insert tracepoints in the program.\n\
Otherwise, any sort of insertion attempt will result in an error."),
			   set_target_permissions, NULL,
			   &setlist, &showlist);

  add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
			   &may_insert_fast_tracepoints_1, _("\
Set permission to insert fast tracepoints in the target."), _("\
Show permission to insert fast tracepoints in the target."), _("\
When this permission is on, GDB may insert fast tracepoints.\n\
Otherwise, any sort of insertion attempt will result in an error."),
			   set_target_permissions, NULL,
			   &setlist, &showlist);

  add_setshow_boolean_cmd ("may-interrupt", class_support,
			   &may_stop_1, _("\
Set permission to interrupt or signal the target."), _("\
Show permission to interrupt or signal the target."), _("\
When this permission is on, GDB may interrupt/stop the target's execution.\n\
Otherwise, any attempt to interrupt or stop will be ignored."),
			   set_target_permissions, NULL,
			   &setlist, &showlist);

  add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
			   &auto_connect_native_target, _("\
Set whether GDB may automatically connect to the native target."), _("\
Show whether GDB may automatically connect to the native target."), _("\
When on, and GDB is not connected to a target yet, GDB\n\
attempts \"run\" and other commands with the native target."),
			   NULL, show_auto_connect_native_target,
			   &setlist, &showlist);
}